scholarly journals Microstructural evolution and mechanical properties of nano-ATZ ceramics by solid solution precipitation

Author(s):  
Yongdong Yu ◽  
Xudong Liu ◽  
Yuchen Yuan ◽  
Wanjun Yu ◽  
Hang Yin ◽  
...  

Abstract Alumina toughened zirconia (ATZ) nanoceramics with high-strength, high-toughness and high-hardness were prepared by in-situ nanoprecipitation from solid solution micro-powders. The submicron Al2O3 (~ 450 nm) and ZrO2 (~ 350 nm) grains contained low-density precipitated nano-ZrO2 (~ 40 nm) and nano-Y4Al2O9 (YAM, ~ 90 nm) particles, respectively, making high-performance nano-ATZ ceramics with ultrafine intracrystalline nanostructure yet achieved. There was a parallel or eutectic lattice orientation relationship between the submicrocrystals and its internal nanoparticles of their crystal planes, which is very conducive to the improvement of the mechanical properties of nano-ATZ ceramics. The fracture toughness and hardness of 30wt%Al2O3/70wt%ZrO2(3mol%Y2O3) can be as high as 5.68 ± 0.17 MPa·m1/2 (single-edge V-notched beam method, SEVNB) and 16.32 ± 0.45 GPa, respectively, which are improved by ~ 25 % and ~ 20 % compared with those of 3Y-TZP ceramics. Therefore, this method can be used to prepare nano-ATZ ceramics contained ultrafine nanoparticles and uniform distribution of Al2O3 phases.

Author(s):  
Huan Zhang ◽  
Weiqiang Ding ◽  
Daryush Aidun

Silicon carbide (SiC) material has many outstanding physical and mechanical properties such as high strength, high hardness, low density, high thermal conductivity, low thermal expansion coefficient, large band-gap, and excellent oxidation and corrosion resistances [1–3]. It is a leading material for components and devices operating at high temperature, high power and under harsh environments [4–5]. Micro-sized SiC particles and whiskers are commonly used as reinforcement materials for ceramics, metals and alloys in various structural and tribological applications [6–7].


2014 ◽  
Vol 1036 ◽  
pp. 101-105
Author(s):  
Gheorghe Buluc ◽  
Iulia Florea ◽  
Oana Bălţătescu ◽  
Costel Roman ◽  
Ioan Carcea

This paper presents the microstructure and the mechanical properties of FeNiCrCuAl high entropy alloys. The microstructure and mechanical properties of the annealed FeNiCrCuAl high entropy alloys were investigated using scanning electron microscopy, and X-ray diffraction. High entropy alloys have been known as a new type of materials and have been defined as having five or more principal elements, each one having a concentration between 5 and 35 at.%. Previous researches show that HEAs can be processed to form simple solid solution structures instead of intermetallics and other complicated compounds. This phenomenon is commonly attributed to the high configurational entropy in the solid solution state of HEAs. Furthermore, HEAs have also exhibited interesting properties such as high hardness and high strength, good thermal stability outstanding wear and oxidation resistance which offer great potential for engineering applications. The HEA systems explored in the past decade show that metallic elements are the most commonly used, e.g. Al, Cr, Fe, Co, Ni, Cu,Ti, etc. A wide range of HEAs exhibit high hardness, high strength, distinctive electrical and magnetic properties, high-temperature softening resistance, as well as favorable combination of compression strength and ductility. This combination of properties and the particular structures of HEAs are attractive for a number of potential engineering applications.


Author(s):  
Jie Sheng ◽  
Peiqing La ◽  
Junqiang Ren ◽  
Jiqiang Ma ◽  
Yu Shi ◽  
...  

Metal and alloy toughening was the core and long-term research direction in materials filed. As grain size had bimodal distribution, micro/nano-structured alloys presented excellent comprehensive mechanical properties, and this had become one of the research hotspots and developing trends in the field of nanotechnology. In-situ tensile test was a direct and effective method to study the deformation mechanism of materials, which revealed the multiple mechanisms responding to feature grain sizes and provided reliable experimental means and research technique. Research on development of in-situ technique and its applications in mechanical properties was reviewed in this paper according to the recent advances on the modern mechanical properties for high strength and high plasticity alloy at home and abroad. The disadvantages of the present study of preparation methods and investigation techniques for high-performance alloy had been concluded. Finally, the development prospects of high strength and high plasticity alloy materials were analyzed.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 36
Author(s):  
Yaqin Yang ◽  
Chongli Mu ◽  
Zhongjian Han ◽  
Jian Xu ◽  
Baocheng Li

The low plasticity of high strength Mg-Gd-Y alloy has become the main obstacle to its application in engineering. In this paper, the origin, propagation and fracture processes of cracks of a solution of treated Mg-13Gd-5Y-3Zn-0.3Zr alloy were observed and studied with scanning electron microscopy (SEM) in an in situ tensile test to provide theoretical references for the development of a new high-performance Mg-Gd-Y alloy. The results showed that there was still some bulk long period stacking order (LPSO) phase remaining in solid solution Mg-13Gd-5Y-3Zn-0.3Zr alloy. Most importantly, it was found that the locations of micro-cracks vary with the different solution treatment processes, mainly including the following three types. (1) At 480 × 10 h and 510 °C × 10 h, much bulk LPSO phase with higher elastic modulus remains in the alloy, which can lead to micro-cracks in the LPSO phase due to stress concentration. (2) At 510 °C × 13 h and 510 °C × 16 h, the phase structure of bulk LPSO changes, and the stress concentration easily appears at the LPSO/α-Mg interface, which leads to micro-cracks at the interface. (3) At 510 °C × 19 h and 510 °C × 22 h, the grain size increases, and the stress concentration is obvious at the grain boundary of coarse grains, which leads to the formation of micro-cracks.


Alloy Digest ◽  
1994 ◽  
Vol 43 (11) ◽  

Abstract CARLSON ALLOYS C600 AND C600 ESR have excellent mechanical properties from sub-zero to elevated temperatures with excellent resistance to oxidation at high temperatures. It is a solid-solution alloy that can be hardened only by cold working. High strength at temperature is combined with good workability. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, and machining. Filing Code: Ni-470. Producer or source: G.O. Carlson Inc.


2008 ◽  
Vol 579 ◽  
pp. 15-28 ◽  
Author(s):  
Carl C. Koch ◽  
Khaled M. Youssef ◽  
Ron O. Scattergood

This paper reviews a method, “in situ consolidation ball milling” that provides artifactfree bulk nanocrystalline samples for several ductile metals such as Zn, Al and Al alloys, and Cu and Cu alloys. The preparation method is described in this paper and examples of the mechanical behavior of nanocrystalline materials made by this technique are given. It is found that in such artifact-free metals, combinations of both high strength and good ductility are possible.


2007 ◽  
Vol 280-283 ◽  
pp. 1385-1390
Author(s):  
Guo Jun Zhang ◽  
Tatsuki Ohji ◽  
Shuzo Kanzaki

Based on the proposed inorganic reactions a series of high performance hexagonal boron nitride-containing composites (BNCC), include SiC-BN, Si3N4-SiC-BN, SiAlON-BN, AlN-BN, Al2O3-BN, AlON-BN and mullite-BN, have been prepared via reactive hot pressing or pressureless reactive sintering. Various boron-bearing components such as B, B4C, AlB2, SiB4, SiB6, B2O3 or H3BO3, 9Al2O3×2B2O3 (9A2B) and 2Al2O3×B2O3 (2AB) are used as the boron source. On the other hand, nitrogen gas or solid state nitirgen-bearing metal nitrides such as Si3N4 and AlN can be used as the nitrogen source. The in situ synthesized composites demonstrated homogeneous and isotropical microstructures with very fine (nano-sized) BN platelets or their agglomerates distributed in the matrixes. These composites showed high strength, low elasticity and improved strain tolerance. In this article the reaction design, thermodynamics, reaction mechanisms, reactive hot pressing or pressureless reactive sintering, microstructures and mechanical properties will be discussed.


2021 ◽  
Vol 315 ◽  
pp. 37-42
Author(s):  
Hai Long Liao ◽  
Li Hua Zhan ◽  
Yuan Gao ◽  
Xue Ying Chen ◽  
Ming Hui Huang

2195 Al-Li alloy is famous for high strength, excellent fatigue strength and good stress corrosion resistance, which is widely used in the manufacture of high-performance aerospace components. The aim of this study is to validate how the stress relaxation aging behavior effect on the mechanical properties of 2195 Al-Li alloy. Through mechanical property test, the research was found that the performance after stress relaxation aging is higher than artificial aging (AA). In addition, the analysis of scanning electron microscopy SEM and TEM revealed that dislocations should be introduced by the stress relaxation aging process, which is more conducive to the precipitation of the T1 phase and strengthened the material with prolong ageing time. The results show that stress relaxation aging can significantly promote the precipitation of the T1. Therefore, this paper sheds new light on how SRA can improve mechanical properties and that SRA make better improve the distribution of precipitates in the grain boundary.


2021 ◽  
Vol 1035 ◽  
pp. 102-107
Author(s):  
Shao Ming Ma ◽  
Chuan Liu Wang ◽  
Yun Lin Fan

Light-weight and high-strength aluminum alloy drill pipes are potential and promising to replace traditional steel drill pipes. In this study, the grain size and mechanical properties of aluminum alloy drilling pipe materials reinforced by in-situ TiB2 particles were studied. The results showed when reinforced by in-situ TiB2 particles the grain size of aluminum alloy materials was refined from 155 m to 57 m and ultimate tensile strength was increased from 590 MPa to 720 MPa. Besides, the results also indicated that the friction coefficient was reduced from 0.99 to 0.50 and thus the abrasion resistance of 7075 aluminum alloy was enhanced by 34 %. This study provided theoretical basis for the application of light-weight and high-strength aluminum alloy drill pipes in directional drilling and ultra-deep wells.


Sign in / Sign up

Export Citation Format

Share Document