Numerical Characterization of a Novel Staged Combustion Concept Applied to Oxy-Fuel Carbon Capture Technology

Author(s):  
Adrian Goanta ◽  
Jan-Peter Bohn ◽  
Maximilian Blume ◽  
Xinmeng Li ◽  
Hartmut Spliethoff

In oxy-combustion the fuel is burnt in a mixture of oxygen and recirculated flue gas to keep the temperature inside the furnace to levels similar to conventional combustion. This eliminates the atmospheric nitrogen from the process, leading to a flue gas consisting mainly of carbon dioxide and water vapor. Further on, the CO2 can be separated for storage purposes. A major drawback of the conventional oxy-fuel combustion technology consists in the high amount of flue gas that has to be recirculated in order to control the temperature level inside the furnace. A novel oxy-fuel firing concept based on a combination of pulverized coal burners operating under non-stoichiometric conditions is investigated as a solution for lowering the necessary flue gas recirculation rate, while keeping the temperature inside the furnace at feasible levels. This paper presents a numerical analysis of the most relevant aspects for this new firing concept, such as process specifics and limitations, burner design criteria, aerodynamic characterization of the near burner zone, flame ignition and temperature. First the process is defined via thermodynamic calculations which are necessary to establish the operating conditions and to generate sets of parameters for the design phase of the burners. Subsequently the parameters generated in the first phase are used as boundary conditions for the design of the burners via CFD simulations. The CFD code used in this study is updated for oxy-firing conditions with the recent developments in terms of gas phase reactions, char conversion modeling and radiative heat transfer in high temperature atmospheres with elevated CO2 concentration. Additionally, the most relevant aspects regarding the validation of the CFD code against in-flame experimental values are presented and discussed. The simulations show good agreement with the averaged experimental data collected along the flame centerline.

Author(s):  
Riccardo Da Soghe ◽  
Cosimo Bianchini ◽  
Jacopo D’Errico

This paper deals with a numerical study aimed at the validation of a computational procedure for the aerothermal characterization of pre-swirl systems employed in axial gas turbines. The numerical campaign focused on an experimental facility which models the flow field inside a direct-flow pre-swirl system. Steady and unsteady simulation techniques were adopted in conjunction with both a standard two-equations RANS/URANS modelling and more advanced approaches such as the Scale-Adaptive-Simulation principle, the SBES and LES. The comparisons between CFD and experiments were done in terms of swirl number development, static and total pressure distributions, receiving holes discharge coefficient and heat transfer on the rotor disc surface. Several operating conditions were accounted for, spanning 0.78·106<Reφ<1.21·106 and 0.123<λt<0.376. Overall the steady-state CFD predictions are in good agreement with the experimental evidences even though it is not able to confidently mimic the experimental swirl and pressure behaviour in some regions. Although the use of unsteady sliding mesh and direct turbulence modelling, would in principle increase the insight in the physical phenomenon, from a design perspective the tradeoff between accuracy and computational costs is not always favourable.


2013 ◽  
Vol 431 ◽  
pp. 139-155 ◽  
Author(s):  
Bee Ting Low ◽  
Li Zhao ◽  
Timothy C. Merkel ◽  
Michael Weber ◽  
Detlef Stolten

Author(s):  
Robin C. Payne ◽  
Manuel Arias ◽  
Vassilis Stefanis

For the next generation of combined cycles, it is essential to not only improve the performance of a gas turbine combined cycle power plant, but also reduce its environmental impact. Flue Gas Recirculation is a useful method to increase CO2 concentration in the exhaust stream, allowing a smaller and lower cost carbon capture plant than would be required without FGR. Conventional FGR methodology requires a complex mixer with long mixing section to achieve acceptable inlet conditions for the GT compressor. A novel approach is presented, where the method of introducing the flue gas to the compressor has been substantially rethought to provide a low cost and robust FGR solution for carbon capture and sequestration applications. In this paper, CFD analysis of the flow in the intake section is used to demonstrate the operating principle of such a method, and cycle modelling calculations to compare its performance with a more conventional approach.


2020 ◽  
Vol 8 ◽  
Author(s):  
Xiaoxing Wang ◽  
Chunshan Song

Climate change has become a worldwide concern with the rapid rise of the atmospheric Co2 concentration. To mitigate Co2 emissions, the research and development efforts in Co2 capture and separation both from the stationary sources with high Co2 concentrations (e.g., coal-fired power plant flue gas) and directly from the atmosphere have grown significantly. Much progress has been achieved, especially within the last twenty years. In this perspective, we first briefly review the current status of carbon capture technologies including absorption, adsorption, membrane, biological capture, and cryogenic separation, and compare their advantages and disadvantages. Then, we focus mainly on the recent advances in the absorption, adsorption, and membrane technologies. Even though numerous optimizations in materials and processes have been pursued, implementing a single separation process is still quite energy-intensive or costly. To address the challenges, we provide our perspectives on future directions of Co2 capture research and development, that is, the combination of flue gas recycling and hybrid capture system, and one-step integrated Co2 capture and conversion system, as they have the potential to overcome the technical bottlenecks of single capture technologies, offering significant improvement in energy efficiency and cost-effectiveness.


Author(s):  
Matteo Cerutti ◽  
Pier Carlo Nassini ◽  
Daniele Pampaloni ◽  
Antonio Andreini

Abstract A fundamental milestone in the development of a low NOx burner technology is the demonstration of its capabilities in realistic environment. This is especially true for the novel burner subject of this paper, which has been extensively characterized throughout single burner scale experiments. An exhaustive description of the early development phases of the novel burner has been provided by authors in recently published works. The most promising geometry was selected for the assessment in real combustor arrangement, consisting of a full-scale annular combustor test rig. This paper reports the main results of such an assessment. Pollutant emissions and pressure pulsations have been measured at gas turbine relevant operating conditions. Moreover, dedicated blow-out tests have been performed to obtain the extinction equivalence ratio at both ambient and pressurized conditions, as done during the past single burner rig campaign. Basically, an adequate set of data has been gathered, allowing a direct comparison between full-annular and reduced-scale tests. A general alignment of behaviour has been observed, as both low NOx capability and blow-out characteristics of full-annular arrangement turned out to be substantially unchanged with respect to single burner. Nevertheless, some discrepancies in magnitude have been highlighted and discussed. Details have been given involving deeper numerical analysis by means of a dedicated model developed by the authors in previous works. Indeed, improvement to the model has been introduced in the context of this paper to overcome some limitations arisen in predicting emissions. Finally, a preliminary stability analysis has been carried out, with the aim to describe the onset of thermoacoustic instability tendency as observed in the full-annular tests.


Author(s):  
Matteo Cerutti ◽  
Pier Carlo Nassini ◽  
Daniele Pampaloni ◽  
Antonio Andreini

Abstract A fundamental milestone in the development of a low NOx burner technology is the demonstration of its capabilities in realistic environment. This is especially true for the novel burner subject of this paper, which has been extensively characterized throughout single burner scale experiments. The most promising geometry from the early development phases was selected for the assessment in realistic environment, consisting of a full-scale annular combustor test rig. This paper reports the main results of the assessment. Pollutant emissions and pressure pulsations have been measured at gas turbine relevant operating conditions. Moreover, dedicated blow-out tests have been performed to obtain the extinction equivalence ratio at both ambient and pressurized conditions, as done during the previous campaign. Basically, an adequate set of data has been gathered, allowing a direct comparison between full-annular and reduced-scale tests. A general alignment of behaviour has been observed, as both low NOx capability and blow-out characteristics of full-annular arrangement turned out to be substantially unchanged with respect to single burner. Nevertheless, some discrepancies in magnitude have been highlighted and discussed. Details have been given involving deeper numerical analysis by means of a dedicated model developed by the authors in previous works. Indeed, improvement to the model has been introduced in the context of this paper to overcome some limitations arisen in predicting emissions. Finally, a preliminary stability analysis has been carried out, with the aim to describe the onset of thermoacoustic instability tendency as observed in the full-annular tests.


Author(s):  
Ram G. Narula ◽  
Harvey Wen

Coal is an abundant, widespread, cheap energy source and contributes to 39% of the world’s electric power generation. Coal releases large amounts of carbon dioxide (CO2), which is believed to play a major role in global warming and climate change. To de-carbonize power generation, three distinct carbon capture technologies are in varying stages of development. These include pre-combustion carbon capture through the use of integrated coal gasification combined cycle (IGCC), post-combustion carbon capture from a pulverized-coal (PC)-fired power plant flue gas using monoethanolamine (MEA) or ammonia (NH3), and oxy-combustion technology. In the latter technology, oxygen is first separated from nitrogen in an air separator unit and used for combustion of coal in a conventional PC boiler. With oxy-combustion technology, the resulting flue gas is predominantly CO2, which makes CO2 capture easier than in the PC-MEA case. This paper discusses the development status as well as the advantages, limitations, performance and economics of each technology in regard to the capture and non-capture cases.


2020 ◽  
Vol 13 (1) ◽  
pp. 72
Author(s):  
Saman Hasan ◽  
Abubakar Jibrin Abbas ◽  
Ghasem Ghavami Nasr

Environmental concern for our planet has changed significantly over time due to climate change, caused by an increasing population and the subsequent demand for electricity, and thus increased power generation. Considering that natural gas is regarded as a promising fuel for such a purpose, the need to integrate carbon capture technologies in such plants is becoming a necessity, if gas power plants are to be aligned with the reduction of CO2 in the atmosphere, through understanding the capturing efficacy of different absorbents under different operating conditions. Therefore, this study provided for the first time the comparison of available absorbents in relation to amine solvents (MEA, DEA, and DEA) CO2 removal efficiency, cost, and recirculation rate to achieve Climate change action through caron capture without causing absorbent disintegration. The study analyzed Flue under different amine-based solvent solutions (monoethanolamine (MEA), diethanolamine (DEA), and methyldiethanolamine (MDEA)), in order to compare their potential for CO2 reduction under different operating conditions and costs. This was simulated using ProMax 5.0 software modeled as a simple absorber tower to absorb CO2 from flue gas. Furthermore, MEA, DEA, and MDEA adsorbents were used with a temperature of 38 °C and their concentration varied from 10 to 15%. Circulation rates of 200–300 m3/h were used for each concentration and solvent. The findings deduced that MEA is a promising solvent compared to DEA and MDEA in terms of the highest CO2 captured; however, it is limited at the top outlet for clean flue gas, which contained 3.6295% of CO2 and less than half a percent of DEA and MDEA, but this can be addressed either by increasing the concentration to 15% or increasing the MEA circulation rate to 300 m3/h.


2020 ◽  
Vol 72 (4) ◽  
pp. 86-98
Author(s):  
Ahmad Hassan ◽  
Usman Ali

Carbon capturing and storage (CCS) is new technology to remove CO2 from the processes that involve elimination of CO2 as its effect on the environment and incessant increase in temperature of the Earth, makes it interesting as well as most dangerous issue that should be dealt timely to reduce the greenhouse gas emissions. In the present research, the data obtained from the experimental study of CO2 capture pilot plant at the Laboratory of Engineering Thermodynamic in TU Kaiserslautern, Germany, is used for the rate based model validation for different cases using monoethenolamine (MEA) as a solvent. Process simulation sensitivity analysis performed includes a wide range of CO2 concentrations for flue gas of different sources i.e. natural gas fired power plant, exhaust gas recycle and coal based power plant. Results obtained from sensitivity analysis point out the effects of lean loading, stripper pressure, MEA concentration and CO2 concentration in flue gas on energy requirement of reboiler and degree of regeneration using MEA as a solvent for a pilot-scale study. It was found that the specific reboiler duty is least for coal-fired power plant in comparison to the natural gas �fired and exhaust gas recycled power plant, keeping the flow rate of the flue gas constant.


2013 ◽  
Vol 645 ◽  
pp. 505-510 ◽  
Author(s):  
Yong Hua Duan ◽  
Hui Li ◽  
De Long Xu ◽  
Le Le Zhang ◽  
Xiao Fan

Using combustion theory to research on the technical theoretical features of oxygen-enriched combustion technology application to the cement industry kiln. On the basis of this, engineering projects of that, a certain enterprise 3000 t/d cement clinker production line applied oxygen-enriched combustion technology, and its economic evaluation were calculated. The results showed that: applying Oxygen-enriched combustion technology to the existing cement clinker calcined equipments, the coal powder consumption, the volume of flue gas and CO2 concentration in the flue gas of unit cement clinker occurred regular changes, When the O2 concentration increased from 21% to 30%, the coal powder consumption decreased by 17.78%, the flue gas volume was reduced by 12.73% and the CO2 concentration in the flue gas increased to 76.57%. If the enterprise used the oxygen-enriched atmosphere of O2 concentration for 30% to form the coal combustion, it can save coal about 71.87 t/d, equipment production capacity increase by 41.75% and capture CO2 products about 2662 t. Every year, this resulted in the profit increasing 103 million yuan.


Sign in / Sign up

Export Citation Format

Share Document