Flat Polymer Heat Spreader With High Aspect Ratio Micro Hybrid Wick Operating Under Adverse Gravity

Author(s):  
Christopher Oshman ◽  
Qian Li ◽  
Li-Anne Liew ◽  
Ronggui Yang ◽  
Y. C. Lee ◽  
...  

We report the successful fabrication and application of a micro-scale hybrid liquid wicking structure in flat polymer-based heat spreaders to improve the heat transfer performance under gravitational acceleration. The hybrid wick consists of 100 μm high, 200 μm wide square electroformed high aspect ratio copper micro-pillars with 31 μm spacing for liquid flow. A woven copper mesh with 51 μm diameter and 76 μm spacing was bonded to the top surface of the pillars to enhance evaporation and condensation heat transfer. The exterior device geometry is 40 mm × 40 mm × 1.0 mm. The 100 μm thick liquid crystal polymer (LCP) casing contains a two-dimensional array of copper filled vias to reduce the overall thermal resistance. The device was tested with heat flux input of up to 63 W/cm2 at horizontal and vertical orientations. The difference in temperature between the evaporator and condenser was measured and compared to a copper reference block of identical exterior dimensions. The experimentally determined thermal resistance of the copper block remained nearly constant at 1.2 K/W. The thermal resistance of the flat polymer heat spreader at horizontal orientation was 0.55 K/W. The same device at −90° adverse orientation resulted in a thermal resistance of 0.60 K/W. These measurements indicate that this hybrid wicking structure is capable of providing a capillary pumping pressure that is effective at transferring at least 63 W/cm2 heat flux regardless of orientation. This work illustrates an important step to developing more effective thermal management strategies for the next generation of heat generating components and the possibility of developing flexible, polymer-based heat spreaders fabricated with standardized printed circuit board technologies.

2005 ◽  
Vol 128 (4) ◽  
pp. 370-379
Author(s):  
Ta-Wei Lin ◽  
Ming-Chang Wu ◽  
Cheng-Hsien Peng ◽  
Po-Li Chen ◽  
Ying-Huei Hung

Thermal characteristics for a horizontal heated chip mounted with three types of nominally flat silicon-based heat spreaders have been systematically investigated. They include the natural convective and radiative heat transfer from the top surface of the heat spreaders to the external ambient, external thermal resistance, and maximum overall thermal resistance. In the aspect of natural convection, an axisymmetric bowl-shaped profile of local Nusselt number is achieved, and the highest convective heat transfer performance occurs at the location near the rim of the heat spreader. The effect of surface roughness on both local and average natural convective heat transfer behaviors from nominally flat silicon-based spreader surfaces to the external ambient is not significant. Two new generalized correlations of local and average Nusselt numbers for various heat spreader surfaces are presented. The contributions of convection and radiation on the total heat dissipated from the top surface of the heat spreader to the ambient are about 72% and 28%, respectively. The effect of surface roughness on external thermal resistance for nominally flat silicon-based surfaces is not significant. The influence of the conductive thermal resistance within the silicon-based heat spreader on the maximum thermal resistance is not significant. The maximum thermal resistance is mainly dominated by external thermal resistance for flat nominally silicon-based heat spreaders.


Author(s):  
Sohail Reddy ◽  
George S. Dulikravich ◽  
Ann-Kayana Blanchard

Abstract The effects of graphene platelets and diamond based thin film heat spreaders on maximum temperature of integrated electronic circuits were investigated. A fully three-dimensional conjugate heat transfer analysis was performed to investigate the effects of thin film material and thickness on the temperature of a hot spot and temperature uniformity on the heated surface of the integrated circuit when subjected to forced convective cooling. Two different materials, diamond and graphene were simulated as materials for thin films. The thin film heat spreaders were applied to the top wall of an array of micro pin-fins having circular cross sections. The integrated circuit with a 4 × 3 mm footprint featured a 0.5 × 0.5 mm hot spot located on the top wall which was also exposed to a uniform background heat flux of 500 W cm−1. A hot spot uniform heat flux of magnitude 2000 W cm−2 was centrally situated on the top surface over a small area of 0.5 × 0.5 mm. Both isotropic and anisotropic properties of the thin film heat spreaders made of graphene platelets and diamond were computationally analyzed. The conjugate heat transfer analysis incorporated thermal contact resistance between the thin film and the silicon substrate. The isotropic thin film heat spreaders significantly reduced the hot spot temperature and increased temperature uniformity, allowing for increased thermal loads. Furthermore, it was found that thickness of the thin film heat spreader need not be greater than a few tens of microns


Author(s):  
Nhat Minh Nguyen ◽  
Eric Monier-Vinard ◽  
Najib Laraqi ◽  
Valentin Bissuel ◽  
Olivier Daniel

Purpose The purpose of this paper is to supply an analytical steady-state solution to the heat transfer equation permitting to fast design investigation. The capability to efficiently transfer the heat away from high-powered electronic devices is a ceaseless challenge. More than ever, the aluminium or copper heat spreaders seem less suitable for maintaining the component sensitive temperature below manufacturer operating limits. Emerging materials, such as annealed pyrolytic graphite (APG), have proposed a new alternative to conventional solid conduction without the gravity dependence of a heat-pipe solution. Design/methodology/approach An APG material is typically sandwiched between a pair of aluminium sheets to compose a robust graphite-based structure. The thermal behaviour of that stacked structure and the effect of the sensitivity of the design parameters on the effective thermal performances is not well known. The ultrahigh thermal conductivity of the APG core is restricted to in-plane conduction and can be 200 times higher than its through-the-thickness conductivity. So, a lower-than-anticipated cross-plane thermal conductivity or a higher-than-anticipated interlayer thermal resistance will compromise the component heat transfer to a cold structure. To analyse the sensitivity of these parameters, an analytical model for a multi-layered structure based on the Fourier series and the superposition principle was developed, which allows predicting the temperature distribution over an APG flat-plate depending on two interlayer thermal resistances. Findings The current work confirms that the in-plane thermal conductivity of APG is among the highest of any conduction material commonly used in electronic cooling. The analysed case reveals that an effective thermal conductivity twice as higher than copper can be expected for a thick APG sheet. The relevance of the developed analytical approach was compared to numerical simulations and experiments for a set of boundary conditions. The comparison shows a high agreement between both calculations to predict the centroid and average temperatures of the heating sources. Further, a method dedicated to the practical characterization of the effective thermal conductivity of an APG heat-spreader is promoted. Research limitations/implications The interlayer thermal resistances act as dissipation bottlenecks which magnify the performance discrepancy. The quantification of a realistic value is more than ever mandatory to assess the APG heat-spreader technology. Practical implications Conventional heat spreaders seem less suitable for maintaining the component-sensitive temperature below the manufacturer operating limits. Having an in-plane thermal conductivity of 1,600 W.m−1.K−1, the APG material seems to be the next paradigm for solving endless needs of a thermal designer. Originality/value This approach is a practical tool to tailor sensitive parameters early to select the right design concept by taking into account potential thermal issues, such as the critical interlayer thermal resistance.


Author(s):  
Wai Hing Wong ◽  
Normah Mohd. Ghazali

Kertas kerja ini membincangkan simulasi berangka ke atas sinki haba saluran mikro dalam penyejukan alatan mikroelektronik. Model Dinamik Bendalir Berkomputer (CFD) tiga dimensi dibina menggunakan pakej komersil, FLUENT, untuk mengkaji fenomenon aliran bendalir dan pemindahan haba konjugat di dalam suatu sinki haba segi empat yang diperbuat daripada silikon. Model ditentusahkan dengan keputusan daripada uji kaji dan pengkajian berangka yang lepas untuk lingkungan nombor Reynolds kurang daripada 400 berdasarkan diameter hidraulik 86 mm. Kajian ini mengambil kira kesan kelikatan bendalir yang bersandaran dengan suhu dan keadaan aliran pra–membangun dari segi hidrodinamik dan haba. Model memberi maklumat tentang taburan suhu dan fluks haba yang terperinci di dalam sinki haba saluran mikro. Kecerunan suhu yang tinggi dicatat pada kawasan pepejal berdekatan dengan sumber. Fluks haba paling tinggi didapati pada dinding tepi saluran mikro diikuti oleh dinding atas dan bawah. Purata pekali pemindahan haba yang lebih tinggi bagi silikon menjadikan ia bahan binaan sinki haba saluran mikro yang lebih baik berbanding dengan kuprum dan aluminium. Peningkatan nisbah aspek saluran mikro yang bersegi empat memberi kecekapan penyejukan yang lebih tinggi kerana kelebaran saluran yang berkurangan memberi kecerunan halaju yang lebih tinggi dalam saluran. Nisbah aspek yang optimum yang diperoleh adalah dalam lingkungan 3.7 – 4.1. Kata kunci: Saluran mikro, CFD, FLUENT, simulasi berangka, penyejukan mikroelektron The paper discusses the numerical simulation of a micro–channel heat sink in microelectronics cooling. A three–dimensional Computational Fluid Dynamics (CFD) model was built using the commercial package, FLUENT, to investigate the conjugate fluid flow and heat transfer phenomena in a silicon–based rectangular microchannel heatsink. The model was validated with past experimental and numerical work for Reynolds numbers less than 400 based on a hydraulic diameter of 86 mm. The investigation was conducted with consideration of temperaturedependent viscosity and developing flow, both hydrodynamically and thermally. The model provided detailed temperature and heat flux distributions in the microchannel heatsink. The results indicate a large temperature gradient in the solid region near the heat source. The highest heat flux is found at the side walls of the microchannel, followed by top wall and bottom wall due to the wall interaction effects. Silicon is proven to be a better microchannel heatsink material compared to copper and aluminum, indicated by a higher average heat transfer. A higher aspect ratio in a rectangular microchannel gives higher cooling capability due to high velocity gradient around the channel when channel width decreases. Optimum aspect ratio obtained is in the range of 3.7 – 4.1. Key words: Microchannel, CFD, FLUENT, numerical simulation, microeletronics cooling


2003 ◽  
Vol 125 (1) ◽  
pp. 104-113 ◽  
Author(s):  
Chang-Yuan Liu ◽  
Ying-Huei Hung

Both experimental and theoretical investigations on the heat transfer and flow friction characteristics of compact cold plates have been performed. From the results, the local and average temperature rises on the cold plate surface increase with increasing chip heat flux or decreasing air mass flow rate. Besides, the effect of chip heat flux on the thermal resistance of cold plate is insignificant; while the thermal resistance of cold plate decreases with increasing air mass flow rate. Three empirical correlations of thermal resistance in terms of air mass flow rate with a power of −0.228 are presented. As for average Nusselt number, the effect of chip heat flux on the average Nusselt number is insignificant; while the average Nusselt number of the cold plate increases with increasing Reynolds number. An empirical relationship between Nu¯cp and Re can be correlated. In the flow frictional aspect, the overall pressure drop of the cold plate increases with increasing air mass flow rate; while it is insignificantly affected by chip heat flux. An empirical correlation of the overall pressure drop in terms of air mass flow rate with a power of 1.265 is presented. Finally, both heat transfer performance factor “j” and pumping power factor “f” decrease with increasing Reynolds number in a power of 0.805; while they are independent of chip heat flux. The Colburn analogy can be adequately employed in the study.


Sign in / Sign up

Export Citation Format

Share Document