Numerical Analysis of Flow and Thermal Performance of a Water-Cooled Wavy Microchannel Heat Sink

Author(s):  
Gongnan Xie ◽  
Jian Liu ◽  
Weihong Zhang ◽  
Bengt Sundén

With the increasing output power of the integrated circuit chips, the heat flux involved is being accordingly increased. In such situation, the air has almost reached its limit of cooling capacity, and thus the liquid cooling technology incorporating microchannel heat sinks is desired to cool the electronic chips in order to remove more heat loads. However these microchannel heat sinks are often designed to be straight with rectangular cross section. In this study, on the basis of a straight microchannel having rectangular cross section, a kind of wavy microchannel is designed and then the laminar flow and heat transfer are investigated numerically. It is shown that for removing the identical load, the wavy microchannel has great potential to reduce pressure drop compared to the straight microchannel, especially for higher wave amplitude at the same Reynolds number, indicating the overall thermal performance of the wavy microchannel is superior to the traditional straight rectangular microchannel. It is suggested such wavy microchannel can be used to cool chips effectively with much smaller pressure drop penalty.

2012 ◽  
Vol 134 (4) ◽  
Author(s):  
Gongnan Xie ◽  
Jian Liu ◽  
Weihong Zhang ◽  
Bengt Sunden

With the increasing output power of the integrated circuit chips, the heat flux involved is being accordingly increased. In such situation, the air has almost reached its limit of cooling capacity, and thus the liquid cooling technology incorporating microchannel heat sinks is desired to cool the electronic chips in order to remove more heat loads. However, these microchannel heat sinks are often designed to be straight with rectangular cross section. In this study, on the basis of a straight microchannel having rectangular cross section, a kind of transversal wavy microchannel is designed and then the laminar flow and heat transfer are investigated numerically. It is shown that for removing the identical load, the transversal wavy microchannel has great potential to reduce pressure drop compared to the straight microchannel, especially for higher wave amplitude at the same Reynolds number, indicating the overall thermal performance of the transversal wavy microchannel is superior to the traditional straight rectangular microchannel. It is suggested such wavy microchannel can be used to cool chips effectively with much smaller pressure drop penalty.


2013 ◽  
Vol 135 (2) ◽  
Author(s):  
Gongnan Xie ◽  
Jian Liu ◽  
Yanquan Liu ◽  
Bengt Sunden ◽  
Weihong Zhang

Liquid cooling incorporating microchannels are used to cool electronic chips in order to remove more heat load. However, such microchannels are often designed to be straight with rectangular cross section. In this paper, on the basis of straight microchannels having rectangular cross section (SRC), longitudinal-wavy microchannel (LWC), and transversal microchannel (TWC) were designed, respectively, and then the corresponding laminar flow and heat transfer were investigated numerically. Among them, the channel wall of LWC undulates along the flow direction according to a sinusoidal function while the TWC undulates along the transversal direction. The numerical results show that for removing an identical heat load, the overall thermal resistance of the LWC is decreased with increasing inlet Reynolds number while the pressure drop is increased greatly, so that the overall thermal performance of LWC is inferior to that of SRC under the considered geometries. On the contrary, TWC has a great potential to reduce the pressure drop compared to SRC, especially for higher wave amplitudes at the same Reynolds number. Thus the overall thermal performance of TWC is superior to that of SRC. It is suggested that the TWC can be used to cool chips effectively with much smaller pressure drop penalty. In addition to the overall thermal resistance, other criteria of evaluation of the overall thermal performance, e.g., (Nu/Nu0)/(f/f0) and (Nu/Nu0)/(f/f0)1/3, are applied and some controversial results are obtained.


Author(s):  
S Emami ◽  
MH Dibaei Bonab ◽  
M Mohammadiun ◽  
H Mohammadiun ◽  
M Sadi

Few papers investigated the effect of different nano-fluids and geometrical parameters of the micro channels on the performance of heat sinks. In this study, Nusselt number and pressure drop are investigated in differential geometry and Reynolds numbers. Then the effect of the micro-channel is studied for different heat flux. The results show that hexagonal micro-channels represents a better performance than the rectangular and the heat transfer of without using nano-particles in the hexagonal cross-section is about 9% higher than the rectangular cross-section and with the presence of nanoparticles (Al2O3 - CUO- TiO2, φ  =  4%), heat transfer is about 30 to 40% higher than the base liquid.


Entropy ◽  
2018 ◽  
Vol 21 (1) ◽  
pp. 16 ◽  
Author(s):  
Daxiang Deng ◽  
Guang Pi ◽  
Weixun Zhang ◽  
Peng Wang ◽  
Ting Fu

This work numerically studies the thermal and hydraulic performance of double-layered microchannel heat sinks (DL-MCHS) for their application in the cooling of high heat flux microelectronic devices. The superiority of double-layered microchannel heat sinks was assessed by a comparison with a single-layered microchannel heat sink (SL-MCHS) with the same triangular microchannels. Five DL-MCHSs with different cross-sectional shapes—triangular, rectangular, trapezoidal, circular and reentrant Ω-shaped—were explored and compared. The results showed that DL-MCHS decreased wall temperatures and thermal resistance considerably, induced much more uniform wall temperature distribution, and reduced the pressure drop and pumping power in comparison with SL-MCHS. The DL-MCHS with trapezoidal microchannels performed the worst with regard to thermal resistance, pressure drop, and pumping power. The DL-MCHS with rectangular microchannels produced the best overall thermal performance and seemed to be the optimum when thermal performance was the prime concern. Nevertheless, the DL-MCHS with reentrant Ω-shaped microchannels should be selected when pumping power consumption was the most important consideration.


Author(s):  
L. K. Tartibu ◽  
M. O. Okwu

Abstract The increase of heat generated in integrated circuit because of the miniaturization of electronic components requires more aggressive cooling solutions in order to minimize this high heat flux and address the temperature non-uniformity. In this paper, a manifold microchannel heat sinks has been investigated. In order to enhance the heat transfer performance of the microchannel, an improved version of the augmented epsilon constraint method is adopted for the optimization of the device. Four non-dimensional design variables have been used to describe the geometry of the manifold microchannel heat sinks. The thermal performance and the pumping power have been incorporated in the mathematical programming formulation as indicators of the thermal performance. A surrogate-based approximation based on the Response Surface Approximation has been utilized to evaluate these two objectives. This new mathematical approach has been implemented in the General Algebraic Modelling Systems (GAMS). Details about single and multi-objective optimization formulation of the problem will be disclosed. Optimal solutions describing the best geometrical configuration of the device will be computed. The implications of the geometrical configuration on the performance the manifold microchannel heat sinks will form part of the main contribution of this study.


Sign in / Sign up

Export Citation Format

Share Document