Study of the Cooling Performance of Oscillating Piezoelectric Fans

Author(s):  
Mohammad Ahmadi Bidakhvidi ◽  
Rasoul Shirzadeh ◽  
Steve Vanlanduit

Piezoelectric vibrating fans operating at resonance are a viable cooling technology due to its easy scalability and low power consumption. This study focuses on the characterization and optimization of the thermal performance of these miniature flapping cooling systems. Different experiments in a miniature windtunnel are conducted to investigate the cooling performance of the oscillating fans. The Strouhal number is a dimensionless parameter describing wing kinematics of flying systems. The aerodynamic propulsive efficiency of these systems is high over a narrow range of Strouhal numbers. Different St numbers were obtained and investigated, by changing the flow velocity of the win-tunnel. In practical applications different St could be obtained by combining conventional axial fans with piezoelectric fans. Both the feasibility of a single fan and array of fans is studied. For a wide range of operating coditions, including distance from heat source, dynamic tip deflection and orientation, the heat transfer performance of the piezoelectric fans is characterized.

2009 ◽  
Vol 131 (11) ◽  
Author(s):  
Mark Kimber ◽  
Suresh V. Garimella

Piezoelectric fans are vibrating cantilevers actuated by a piezoelectric material and can provide heat transfer enhancement while consuming little power. Past research has focused on feasibility and performance characterization of a single fan, while arrays of such fans, which have important practical applications, have not been widely studied. This paper investigates the heat transfer achieved using arrays of cantilevers vibrating in their first resonant mode. This is accomplished by determining the local convection coefficients due to the two piezoelectric fans mounted near a constant heat flux surface using infrared thermal imaging. The heat transfer performance is quantified over a wide range of operating conditions, including vibration amplitude (7.5–10 mm), distance from heat source (0.01–2 times the fan amplitude), and pitch between fans (0.5–4 times the amplitude). The convection patterns observed are strongly dependent on the fan pitch, with the behavior resembling a single fan for small fan pitch and two isolated fans at a large pitch. The area-averaged thermal performance of the fan array is superior to that of a single fan, and correlations are developed to describe this enhancement in terms of the governing parameters. The best thermal performance is obtained when the fan pitch is 1.5 times its vibration amplitude.


Author(s):  
J.M. Cowley

The HB5 STEM instrument at ASU has been modified previously to include an efficient two-dimensional detector incorporating an optical analyser device and also a digital system for the recording of multiple images. The detector system was built to explore a wide range of possibilities including in-line electron holography, the observation and recording of diffraction patterns from very small specimen regions (having diameters as small as 3Å) and the formation of both bright field and dark field images by detection of various portions of the diffraction pattern. Experience in the use of this system has shown that sane of its capabilities are unique and valuable. For other purposes it appears that, while the principles of the operational modes may be verified, the practical applications are limited by the details of the initial design.


Akustika ◽  
2020 ◽  
pp. 8-13
Author(s):  
Štefan Hardoň ◽  
Jozef Kúdelčík

Magnetic fluids with nanoparticles dispersed in water or oils offer attractive applications in biomedicine and industry. Biocompatible magnetic fluids are used for diagnostics and therapy in medical applications, in pharmacy, and biosensors. Application of ferrofluids is expanding into energy conservation, faster and efficient cooling, and hence better performance in a wide variety of practical applications (in heat exchangers, mainly in micro-cooling systems). For the study of the influence of an external magnetic field on the aggregation processes of magnetic nanoparticles in magnetic fluids, acoustic spectroscopy was used. The jump changes of the magnetic flux density at various temperatures influenced the acoustic attenuation. The measured changes were results of nanoparticle aggregations into new structures.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1486
Author(s):  
Eugene B. Caldona ◽  
Ernesto I. Borrego ◽  
Ketki E. Shelar ◽  
Karl M. Mukeba ◽  
Dennis W. Smith

Many desirable characteristics of polymers arise from the method of polymerization and structural features of their repeat units, which typically are responsible for the polymer’s performance at the cost of processability. While linear alternatives are popular, polymers composed of cyclic repeat units across their backbones have generally been shown to exhibit higher optical transparency, lower water absorption, and higher glass transition temperatures. These specifically include polymers built with either substituted alicyclic structures or aromatic rings, or both. In this review article, we highlight two useful ring-forming polymer groups, perfluorocyclobutyl (PFCB) aryl ether polymers and ortho-diynylarene- (ODA) based thermosets, both demonstrating outstanding thermal stability, chemical resistance, mechanical integrity, and improved processability. Different synthetic routes (with emphasis on ring-forming polymerization) and properties for these polymers are discussed, followed by their relevant applications in a wide range of aspects.


2021 ◽  
Vol 6 (1) ◽  
pp. 2
Author(s):  
Liliana Anchidin-Norocel ◽  
Sonia Amariei ◽  
Gheorghe Gutt

The aim of this paper is the development of a sensor for the quantification of nickel ions in food raw materials and foods. It is believed that about 15% of the human population suffers from nickel allergy. In addition to digestive manifestations, food intolerance to nickel may also have systemic manifestations, such as diffuse dermatitis, diffuse itching, fever, rhinitis, headache, altered general condition. Therefore, it is necessary to control this content of nickel ions for the health of the human population by developing a new method that offers the advantages of a fast, not expensive, in situ, and accurate analysis. For this purpose, bismuth oxide-screen-printed electrodes (SPEs) and graphene-modified SPEs were used with a very small amount of dimethylglyoxime and amino acid L-histidine that were deposited. A potentiostat that displays the response in the form of a cyclic voltammogram was used to study the electrochemical properties of nickel standard solution with different concentrations. The results were compared and the most sensitive sensor proved to be bismuth oxide-SPEs with dimethylglyoxime (Bi2O3/C-dmgH2) with a linear response over a wide range (0.1–10 ppm) of nickel concentrations. Furthermore, the sensor shows excellent selectivity in the presence of common interfering species. The Bi2O3/C-dmgH2 sensor showed good viability for nickel analysis in food samples (cocoa, spinach, cabbage, and red wine) and demonstrated significant advancement in sensor technology for practical applications.


Author(s):  
Francisco González ◽  
Pierangelo Masarati ◽  
Javier Cuadrado ◽  
Miguel A. Naya

Formulating the dynamics equations of a mechanical system following a multibody dynamics approach often leads to a set of highly nonlinear differential-algebraic equations (DAEs). While this form of the equations of motion is suitable for a wide range of practical applications, in some cases it is necessary to have access to the linearized system dynamics. This is the case when stability and modal analyses are to be carried out; the definition of plant and system models for certain control algorithms and state estimators also requires a linear expression of the dynamics. A number of methods for the linearization of multibody dynamics can be found in the literature. They differ in both the approach that they follow to handle the equations of motion and the way in which they deliver their results, which in turn are determined by the selection of the generalized coordinates used to describe the mechanical system. This selection is closely related to the way in which the kinematic constraints of the system are treated. Three major approaches can be distinguished and used to categorize most of the linearization methods published so far. In this work, we demonstrate the properties of each approach in the linearization of systems in static equilibrium, illustrating them with the study of two representative examples.


Author(s):  
Qing-Mao Zeng ◽  
Tong-Lin Zhu ◽  
Xue-Ying Zhuang ◽  
Ming-Xuan Zheng

Leaf is one of the most important organs of plant. Leaf contour or outline, usually a closed curve, is a fundamental morphological feature of leaf in botanical research. In this paper, a novel shape descriptor based on periodic wavelet series and leaf contour is presented, which we name as Periodic Wavelet Descriptor (PWD). The PWD of a leaf actually expresses the leaf contour in a vector form. Consequently, the PWD of a leaf has a wide range in practical applications, such as leaf modeling, plant species identification and classification, etc. In this work, the plant species identification and the leaf contour reconstruction, as two practical applications, are discussed to elaborate how to employ the PWD of a plant leaf in botanical research.


Geophysics ◽  
2016 ◽  
Vol 81 (5) ◽  
pp. C219-C227 ◽  
Author(s):  
Hanjie Song ◽  
Yingjie Gao ◽  
Jinhai Zhang ◽  
Zhenxing Yao

The approximation of normal moveout is essential for estimating the anisotropy parameters of the transversally isotropic media with vertical symmetry axis (VTI). We have approximated the long-offset moveout using the Padé approximation based on the higher order Taylor series coefficients for VTI media. For a given anellipticity parameter, we have the best accuracy when the numerator is one order higher than the denominator (i.e., [[Formula: see text]]); thus, we suggest using [4/3] and [7/6] orders for practical applications. A [7/6] Padé approximation can handle a much larger offset and stronger anellipticity parameter. We have further compared the relative traveltime errors between the Padé approximation and several approximations. Our method shows great superiority to most existing methods over a wide range of offset (normalized offset up to 2 or offset-to-depth ratio up to 4) and anellipticity parameter (0–0.5). The Padé approximation provides us with an attractive high-accuracy scheme with an error that is negligible within its convergence domain. This is important for reducing the error accumulation especially for deeper substructures.


2020 ◽  
Vol 36 (2) ◽  
pp. 265-310 ◽  
Author(s):  
Morteza Asghari ◽  
Amir Dashti ◽  
Mashallah Rezakazemi ◽  
Ebrahim Jokar ◽  
Hadi Halakoei

AbstractArtificial neural networks (ANNs) as a powerful technique for solving complicated problems in membrane separation processes have been employed in a wide range of chemical engineering applications. ANNs can be used in the modeling of different processes more easily than other modeling methods. Besides that, the computing time in the design of a membrane separation plant is shorter compared to many mass transfer models. The membrane separation field requires an alternative model that can work alone or in parallel with theoretical or numerical types, which can be quicker and, many a time, much more reliable. They are helpful in cases when scientists do not thoroughly know the physical and chemical rules that govern systems. In ANN modeling, there is no requirement for a deep knowledge of the processes and mathematical equations that govern them. Neural networks are commonly used for the estimation of membrane performance characteristics such as the permeate flux and rejection over the entire range of the process variables, such as pressure, solute concentration, temperature, superficial flow velocity, etc. This review investigates the important aspects of ANNs such as methods of development and training, and modeling strategies in correlation with different types of applications [microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), reverse osmosis (RO), electrodialysis (ED), etc.]. It also deals with particular types of ANNs that have been confirmed to be effective in practical applications and points out the advantages and disadvantages of using them. The combination of ANN with accurate model predictions and a mechanistic model with less accurate predictions that render physical and chemical laws can provide a thorough understanding of a process.


Sign in / Sign up

Export Citation Format

Share Document