The Effect of an Operator Compartment Door on Standup Forklift Off-Dock and Tip-Over Injuries

Author(s):  
John F. Wiechel ◽  
William R. (Mike) Scott

A series of tip-over and off-the-dock impact tests were performed with stand-up forklifts in order to investigate the potential for injury to the operator of a forklift in these types of accidents when the forklift is equipped with an operator’s compartment door. One Crown Equipment Company RR Model and one RC Model stand-up forklift were used in the impact tests. The only modification to the forklifts for the tests was the placement of a door on the entrance to the operator’s compartment. A Hybrid III anthropomorphic test device (ATD) was placed in the operator’s compartment as a human surrogate. During each test, head accelerations, chest accelerations, neck loads and lumbar loads were measured on the ATD. The motion of the forklift and the ATD were filmed with video and high-speed cameras. Results from the impact tests indicate that there is a high risk of head injury in a right side tip-over accident and a high risk of head injury and neck injury in a left side tip-over accident. There is a high risk of a head injury, neck injury and thoracic injury in off-the-dock forks-trailing accidents. In an off-the-dock forks-leading accident there is a high risk of arm/shoulder injury, head injury, and neck injury. In both tip-over and off-the-dock forks-trailing accidents there is a high probability of an entrapment injury under the overhead guard on the forklift.

Author(s):  
John F. Wiechel ◽  
William R. “Mike” Scott

A series of tip-over and off-the-dock impact tests were performed with stand-up forklifts to investigate the potential for injury to the operator of a forklift in these types of accidents, when the forklift is equipped with an operator’s compartment door. One Crown Equipment Company 35RRTT Model and one 35RCTT Model stand-up forklifts were used in the impact tests. The only modification to the forklifts for the tests was the placement of a door on the entrance to the operator’s compartment. A Hybrid III anthropomorphic test device (ATD) was placed in the operator’s compartment as a human surrogate. During each test, head accelerations, chest accelerations, neck loads, and lumbar loads were measured on the ATD. The motion of the forklift and the ATD were filmed with real-time video and high-speed cameras. Results from the impact tests indicate that there is a high risk of head injury in a right-side tip-over accident and a high risk of head injury and neck injury in a left-side tip-over accident. There is a high risk of a head injury, neck injury, and thoracic injury in off-the-dock forks-trailing accidents. In an off-the-dock forks-leading accident, there is a high risk of arm/shoulder injury, head injury, and neck injury. In both tip-over and off-the-dock forks-trailing accidents, there is a high probability of an entrapment injury under the overhead guard on the forklift.


2017 ◽  
Vol 139 (10) ◽  
Author(s):  
Daniel Aggromito ◽  
Mark Jaffrey ◽  
Allen Chhor ◽  
Bernard Chen ◽  
Wenyi Yan

When simulating or conducting land mine blast tests on armored vehicles to assess potential occupant injury, the preference is to use the Hybrid III anthropomorphic test device (ATD). In land blast events, neither the effect of body-borne equipment (BBE) on the ATD response nor the dynamic response index (DRI) is well understood. An experimental study was carried out using a drop tower test rig, with a rigid seat mounted on a carriage table undergoing average accelerations of 161 g and 232 g over 3 ms. A key aspect of the work looked at the various lumbar spine assemblies available for a Hybrid III ATD. These can result in different load cell orientations for the ATD which in turn can affect the load measurement in the vertical and horizontal planes. Thirty-two tests were carried out using two BBE mass conditions and three variations of ATDs. The latter were the Hybrid III with the curved (conventional) spine, the Hybrid III with the pedestrian (straight) spine, and the Federal Aviation Administration (FAA) Hybrid III which also has a straight spine. The results showed that the straight lumbar spine assemblies produced similar ATD responses in drop tower tests using a rigid seat. In contrast, the curved lumbar spine assembly generated a lower pelvis acceleration and a higher lumbar load than the straight lumbar spine assemblies. The maximum relative displacement of the lumbar spine occurred after the peak loading event, suggesting that the DRI is not suitable for assessing injury when the impact duration is short and an ATD is seated on a rigid seat on a drop tower. The peak vertical lumbar loads did not change with increasing BBE mass because the equipment mass effects did not become a factor during the peak loading event.


Author(s):  
Aboulghit El Malki Alaoui

Experimental impact tests were performed using a shock machine and aerated water by means of an air-bubble generator. High speed shock test machine allows carrying out tests of impact on water (slamming). This machine permits to stabilise velocity with a maximal error equal to 10% during slamming tests. The air volume fraction in the bubble was measured by optical probe technique. The present work is aimed at quantifying the effects of the aeration on the hydrodynamic loads and pressures during the entry of a rigid body at constant speed in an air-water mixture. The impact tests were conducted with a rigid pyramid for an impact velocity equal to 15 m.s−1 and for two average void fractions, 0,46% and 0,84%. The reduction of the impact force and pressure due to aeration has been confirmed by these experiments.


Author(s):  
Shuguang Yao ◽  
Zhixiang Li ◽  
Wen Ma ◽  
Ping Xu ◽  
Quanwei Che

Coupler rubber buffers are widely used in high-speed trains, to dissipate the impact energy between vehicles. The rubber buffer consists of two groups of rubbers, which are pre-compressed and then installed into the frame body. This paper specifically focuses on the energy absorption characteristics of the rubber buffers. Firstly, quasi-static compression tests were carried out for one and three pairs of rubber sheets, and the relationship between the energy absorption responses, i.e. Eabn  =  n ×  Eab1, Edissn =  n ×  Ediss1, and Ean =  Ea1, was obtained. Next, a series of quasi-static tests were performed for one pair of rubber sheet to investigate the energy absorption performance with different compression ratios of the rubber buffers. Then, impact tests with five impact velocities were conducted, and the coupler knuckle was destroyed when the impact velocity was 10.807 km/h. The results of the impact tests showed that with the increase of the impact velocity, the Eab, Ediss, and Ea of the rear buffer increased significantly, but the three responses of the front buffer did not increase much. Finally, the results of the impact tests and quasi-static tests were contrastively analyzed, which showed that with the increase of the stroke, the values of Eab, Ediss, and Ea increased. However, the increasing rates of the impact tests were higher than that of the quasi-static tests. The maximum value of Ea was 68.76% in the impact tests, which was relatively a high value for the vehicle coupler buffer. The energy capacity of the rear buffer for dynamic loading was determined as 22.98 kJ.


Author(s):  
Gianmarco Galmarini ◽  
Massimiliano Gobbi ◽  
Gianpiero Mastinu ◽  
Giorgio Previati

In this paper a method for the evaluation of the dynamic performance of neck protection devices for motorcyclists is presented. The research project involves both experimental and numerical activities. An impulsive load is applied to the head of a 50th percentile male Hybrid III dummy while wearing a helmet by means of a pendulum of calibrated mass starting from a well-defined initial condition. The impact load and the load at the neck of the dummy are measured by means of two six axes load cells. Additionally, head linear and rotational accelerations are measured. The test procedure shows a very good repeatability and allows for the comparison of the force passing through the neck with and without neck protection devices. Since neck protection devices should work in situations in which no relevant head injuries are present, the experimental parameters (pendulum mass and speed) are chosen to cause a high probability of injuries to the neck together with a low probability of damages to the head while wearing a standard helmet. Injury indices, found in the literature, have been used to determine the neck injury level. A multibody model of the human neck, developed in Matlab™ SimMechanics™, is validated by using the data acquired during the tests. A study of real-world crashes has allowed the identification of reference impact scenarios which have been simulated by using the multibody model. The validated model is suitable to determine the chance that a motorcyclist would have significant neck injury with or without a neck protecting device.


2012 ◽  
Vol 445 ◽  
pp. 189-194
Author(s):  
Enver Bulent Yalcin ◽  
Volkan Gunay ◽  
Muzeyyen Marsoglu

The study presents the need for instrumented testing to optimizing materials against impact forces. The objective of the study is how the impact behaviour of composite materials is investigated by slow and high speed impact tests. Instron Dynatup 9250HV and Instron Dynatup 8150 Impact test machines (Fig.1.) are used which are located in TUBITAK-MRC, Materials Institute , Impact Test Laboratory". The damage process in composite materials under low and high velocity impact loading and the impact energy-displacement properties of the composite materials were investigated. Composite samples were produced by woven fabrics. The results are given as graphs and tables. The Impulse Data Acquisition software is used to send the data to computer.


2014 ◽  
Vol 121 (6) ◽  
pp. 1314-1322 ◽  
Author(s):  
Pedro A. Gómez ◽  
Javier de-la-Cruz ◽  
David Lora ◽  
Luis Jiménez-Roldán ◽  
Gregorio Rodríguez-Boto ◽  
...  

Object Traumatic brain injury (TBI) represents a large health and economic burden. Because of the inability of previous randomized controlled trials (RCTs) on TBI to demonstrate the expected benefit of reducing unfavorable outcomes, the IMPACT (International Mission on Prognosis and Analysis of Clinical Trials in TBI) and CRASH (Corticosteroid Randomisation After Significant Head Injury) studies provided new methods for performing prognostic studies of TBI. This study aimed to develop and externally validate a prognostic model for early death (within 48 hours). The secondary aim was to identify patients who were more likely to succumb to an early death to limit their inclusion in RCTs and to improve the efficiency of RCTs. Methods The derivation cohort was recruited at 1 center, Hospital 12 de Octubre, Madrid (1990–2003, 925 patients). The validation cohort was recruited in 2004–2006 from 7 study centers (374 patients). The eligible patients had suffered closed severe TBIs. The study outcome was early death (within 48 hours post-TBI). The predictors were selected using logistic regression modeling with bootstrapping techniques, and a penalized reduction was used. A risk score was developed based on the regression coefficients of the variables included in the final model. Results In the validation set, the final model showed a predictive ability of 50% (Nagelkerke R2), with an area under the receiver operating characteristic curve of 89% and an acceptable calibration (goodness-of-fit test, p = 0.32). The final model included 7 variables, and it was used to develop a risk score with a range from 0 to 20 points. Age provided 0, 1, 2, or 3 points depending on the age group; motor score provided 0 points, 2 (untestable), or 3 (no response); pupillary reactivity, 0, 2 (1 pupil reacted), or 6 (no pupil reacted); shock, 0 (no) or 2 (yes); subarachnoid hemorrhage, 0 or 1 (severe deposit); cisternal status, 0 or 3 (compressed/absent); and epidural hematoma, 0 (yes) or 2 (no). Based on the risk of early death estimated with the model, 4 risk of early death groups were established: low risk, sum score 0–3 (< 1% predicted mortality); moderate risk, sum score 4–8 (predicted mortality between 1% and 10%); high risk, sum score 9–12 (probability of early death between 10% and 50%); and very high risk, sum score 13–20 (early mortality probability > 50%). This score could be used for selecting patients for clinical studies. For example, if patients with very high risk scores were excluded from our study sample, the patients included (eligibility score < 13) would represent 80% of the original sample and only 23% of the patients who died early. Conclusions The combination of Glasgow Coma Scale score, CT scanning results, and secondary insult data into a prognostic score improved the prediction of early death and the classification of TBI patients.


2016 ◽  
Vol 258 ◽  
pp. 318-321 ◽  
Author(s):  
Vilma Buršíková ◽  
Jaroslav Sobota ◽  
Jan Grossman ◽  
Tomáš Fořt ◽  
Libor Dupák ◽  
...  

The aim of the present work was to study the mechanical properties of thin nanocomposite Mo-B-C coatings consisting of nanocrystalline Mo2BC embedded in amorphous Mo-B-C matrix. Magnetron sputtering of three targets, B4C, C and Mo, was used for coatings preparation. The Mo-B-C coatings were deposited on high speed steel substrates. The fracture resistance of Mo-B-C coatings was studied by both indentation and dynamic impact tests. The impact tests enabled us to predict the load limit causing the coating destruction.


Author(s):  
Shaun Eshraghi ◽  
Kristine Severson ◽  
David Hynd ◽  
A. Benjamin Perlman

The Hybrid-III Rail Safety (H3-RS) anthropomorphic test device (ATD), also known as a crash test dummy, was developed by the Rail Safety and Standards Board (RSSB), DeltaRail (now Resonate Group Ltd.), and the Transport Research Laboratory (TRL) in the United Kingdom between 2002 and 2005 for passenger rail safety applications [1]. The H3-RS is a modification of the standard Hybrid-III 50th percentile male (H3-50M) ATD with additional features in the chest and abdomen to increase its biofidelity and eight sensors to measure deflection. The H3-RS features bilateral (left and right) deflection sensors in the upper and lower chest and in the upper and lower abdomen; whereas, the standard H3-50M only features a single unilateral (center) deflection sensor in the chest with no deflection sensors located in the abdomen. Additional H3-RS research was performed by the Volpe National Transportation Systems Center (Volpe Center) under the direction of the U.S. Department of Transportation, Federal Railroad Administration (FRA) Office of Research, Development, and Technology. The Volpe Center contracted with TRL to conduct a series of dynamic pendulum impact tests [2]. The goal of testing the abdomen response of the H3-RS ATD was to develop data to refine an abdomen design that produces biofidelic and repeatable results under various impact conditions with respect to impactor geometry, vertical impact height, and velocity. In this study, the abdominal response of the H3-RS finite element (FE) model that TRL developed is validated using the results from pendulum impact tests [2]. Results from the pendulum impact tests and corresponding H3-RS FE simulations are compared using the longitudinal relative deflection measurements from the internal sensors in the chest and abdomen as well as the longitudinal accelerometer readings from the impactor. The abdominal response of the H3-RS FE model correlated well with the physical ATD as the impactor geometry, vertical impact height, and velocity were changed. There were limitations with lumbar positioning of the H3-RS FE model as well as the material definition for the relaxation rate of the foam in the abdomen that can be improved in future work. The main goal of validating the abdominal response of the dummy model is to enable its use in assessing injury potential in dynamic sled testing of crashworthy workstation tables, the results of which are presented in a companion paper [3]. The authors used the model of the H3-RS ATD to study the 8G sled test specified in the American Public Transportation Association (APTA) workstation table safety standard [4]. The 8G sled test is intended to simulate the longitudinal crash accleration in a severe train-to-train collision involving U.S. passenger equipment. Analyses of the dynamic sled test are useful for studying the sensitivity of the sled test to factors such as table height, table force-crush behavior, seat pitch, etc., which help to inform discussions on revisions to the test requirements eventually leading to safer seating environments for passengers.


2021 ◽  
Author(s):  
Christophe Then

Almost 60 years after the assassination of John F. Kennedy in 1963 the majority of Americans are still reluctant to believe the official reports of commissions from 1964 and again in 1976 that determined the direction of the shot resulting in the fatal head injury. Long-withheld, confidential government files released in 2017 reignited the controversy.The present investigation computationally simulated projectile-skull impacts from the direction specified in official reports and from three other directions. Detailed geometric models of the human head and ammunition, as well as known parameters from the assassination site served as the supportive base for analysis. Constitutive mathematical models for the impact of projectile material with skull tissues at supersonic speed were employed to analyze bone and bullet fragmentation mechanics. Simulated fracture characteristics of the bone and the bullet were compared with photographic and X-ray evidence. The most likely origin of the fatal shot was determined based on the degree of corresponding deformation and fragmentation between simulation and documented evidence. Computational corroboration could be established as physically consistent with high-speed impact from the rear, as established by the official commissions. Simulations of three other speculative shot origins did not correspond to the documented evidence.


Sign in / Sign up

Export Citation Format

Share Document