Experimental investigation of the quasi-static and impact tests on the energy absorption characteristics of coupler rubber buffers used in railway vehicles

Author(s):  
Shuguang Yao ◽  
Zhixiang Li ◽  
Wen Ma ◽  
Ping Xu ◽  
Quanwei Che

Coupler rubber buffers are widely used in high-speed trains, to dissipate the impact energy between vehicles. The rubber buffer consists of two groups of rubbers, which are pre-compressed and then installed into the frame body. This paper specifically focuses on the energy absorption characteristics of the rubber buffers. Firstly, quasi-static compression tests were carried out for one and three pairs of rubber sheets, and the relationship between the energy absorption responses, i.e. Eabn  =  n ×  Eab1, Edissn =  n ×  Ediss1, and Ean =  Ea1, was obtained. Next, a series of quasi-static tests were performed for one pair of rubber sheet to investigate the energy absorption performance with different compression ratios of the rubber buffers. Then, impact tests with five impact velocities were conducted, and the coupler knuckle was destroyed when the impact velocity was 10.807 km/h. The results of the impact tests showed that with the increase of the impact velocity, the Eab, Ediss, and Ea of the rear buffer increased significantly, but the three responses of the front buffer did not increase much. Finally, the results of the impact tests and quasi-static tests were contrastively analyzed, which showed that with the increase of the stroke, the values of Eab, Ediss, and Ea increased. However, the increasing rates of the impact tests were higher than that of the quasi-static tests. The maximum value of Ea was 68.76% in the impact tests, which was relatively a high value for the vehicle coupler buffer. The energy capacity of the rear buffer for dynamic loading was determined as 22.98 kJ.

Author(s):  
Alireza Ahmadi ◽  
Masoud Asgari

Thin-walled structures are of much interest as energy absorption devices for their great crashworthiness and also low weight. Conical tubes are favorable structures because unlike most other geometries, they are also useful in oblique impacts. This paper investigated the effect of corrugations on energy absorption characteristics of conical tubes under quasi-static axial and oblique loadings. To do so, conical tubes with different corrugation geometries were analyzed using the finite element explicit code and the effects of corrugations on initial peak crushing force and specific energy absorption were studied. The finite element model was validated by experimental quasi-static compression tests on simple and corrugated aluminum cylinders. An efficient analytical solution for EA during axial loading was also derived and compared with the FEM solution. The crushing stableness was analyzed using the undulation of the load-carrying capacity parameter and it was shown that corrugations made collapsing mode, more predictable and controllable. The findings have shown that corrugated conical tubes have much better energy absorption characteristics compared with their non-corrugated counterparts. It was also discovered that during oblique loadings, introducing corrugations can significantly increase the specific energy absorption compared with simple cones.


2012 ◽  
Vol 706-709 ◽  
pp. 745-750 ◽  
Author(s):  
Hidetoshi Kobayashi ◽  
Keitaro Horikawa ◽  
Keiko Watanabe ◽  
Kinya Ogawa ◽  
Kensuke Nozaki

In this study, the effect of strain rate on the strength and the absorbed energy of polylactic acid resin foam (PLA-foam), which is generally known as one of carbon-neutral and environmentally-friendly polymers, were examined by a series of compression tests at various strain rates from 0.001 to 750 s-1. For the measurements of the impact load and the displacement of specimen, a special load cell and a high-speed video camera were used, respectively. The flow stress of the PLA-foam strongly depends upon not only strain rate but also density of specimens. Thus, a new technique to eliminate the effect of the difference in the specimen density was proposed and successfully applied. It was also found that the strain-rate dependency of PLA-foam can be expressed by a simple power law.


2018 ◽  
Vol 183 ◽  
pp. 02002
Author(s):  
Gunasilan Manar ◽  
Norazrina Mat Jali ◽  
Patrice Longère

We are here interested in the crack arrest capability under impact loading of metals and polymers used as structural and/or protection materials in aerospace engineering. Kalthoff and Winkler-type impact tests are carried out to that purpose on high strength AA7175 aluminum alloy and shock resistant polymethyl methacrylate (PMMA). Impact tests are carried out at impact velocities ranging from 50 m/s to 250 m/s and high speed camera is used to record the different steps of the failure process. For AA7175, early Mode II shear failure followed by late Mode I opening failure are seen. The premature ductile failure of the alloy is shown to result from a preceding stage of dynamic localization in the form of adiabatic shear bands. Impact tests on shock-resistant PMMA evidence the brittle feature of the material failure. It is notably shown that the higher the impact velocity (in the range 50-100 m/s) the larger the number of fragments. Moreover, depending on the impact velocity, changes in the crack path and thus in the mechanisms controlling the PMMA dynamic fracture can be seen.


Author(s):  
S. Jenson ◽  
M. Ali ◽  
K. Alam ◽  
J. Hoffman

The work presented here is a continuation of the study performed in exploring the energy absorption characteristics of non-Newtonian fluid-filled regular hexagonal aluminum honeycomb structures. In the previous study, energy absorbing properties were investigated by using an air powered pneumatic ram, dynamic load cell, and a high speed camera. This study was conducted using a pneumatic ram which was designed to exploit only its kinetic energy during the impact. Experimental samples included an empty honeycomb sample and a filled sample as the filled samples showed the largest difference in energy absorption with respect to the empty samples in the previous study. Therefore, the filled samples were further investigated in this study by measuring the impact forces at the distal end as well as the damage on the impact end. Upon impact, the filled samples were able to reduce the damage area on impact end and were able to lower average and peak forces by 71.9% and 77.4% at the distal end as compared to the empty sample.


Author(s):  
Timothy G. Zhang ◽  
Chris Meredith ◽  
Allison Muller ◽  
Paul Moy ◽  
Sikhanda S. Satapathy

In this study, quasi-static compression and dynamic impact experiments were conducted on helmet pads. Various layers of the foam pad: comfort, stiff and bilayer were tested to characterize their material response. In the compression tests, a piston compressed foam samples at constant velocity. The samples were tested under confined and unconfined conditions. In the dynamic impact experiments, the foam samples were impacted by a rigid projectile. Both the time histories of the force applied to the foam samples and the sample displacement were recorded to calculate the engineering strain and stress in the foam samples. The material stiffness in the impact tests was found to be several times that of the quasi-static tests.


2021 ◽  
Vol 104 (3) ◽  
pp. 003685042110368
Author(s):  
Dong An ◽  
Jiaqi Song ◽  
Hailiang Xu ◽  
Jingzong Zhang ◽  
Yimin Song ◽  
...  

When the rock burst occurs, energy absorption support is an important method to solve the impact failure. To achieve constant resistance performance of energy absorption device, as an important component of the support, the mechanical properties of one kind of prefolded tube is analyzed by quasi-static compression test. The deformation process of compression test is simulated by ABAQUS and plastic strain nephogram of the numerical model are studied. It is found that the main factors affecting the fluctuation of force-displacement curve is the stiffness of concave side wall. The original tube is improved to constant resistance by changing the side wall. The friction coefficient affects the folding order and form of the energy absorbing device. Lifting the concave side wall stiffness can improve the overall stiffness of energy absorption device and slow down the falling section of force-displacement curve. It is always squeezed by adjacent convex side wall in the process of folding, with large plastic deformation. Compared with the original one, the improved prefolded tube designed in this paper can keep the maximum bearing capacity ( Pmax), increase the total energy absorption ( E), improve the specific energy absorption (SEA), and decrease the variance ( S2) of force-displacement curve.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1602
Author(s):  
Ángel Molina-Viedma ◽  
Elías López-Alba ◽  
Luis Felipe-Sesé ◽  
Francisco Díaz

Experimental characterization and validation of skin components in aircraft entails multiple evaluations (structural, aerodynamic, acoustic, etc.) and expensive campaigns. They require different rigs and equipment to perform the necessary tests. Two of the main dynamic characterizations include the energy absorption under impact forcing and the identification of modal parameters through the vibration response under any broadband excitation, which also includes impacts. This work exploits the response of a stiffened aircraft composite panel submitted to a multi-impact excitation, which is intended for impact and energy absorption analysis. Based on the high stiffness of composite materials, the study worked under the assumption that the global response to the multi-impact excitation is linear with small strains, neglecting the nonlinear behavior produced by local damage generation. Then, modal identification could be performed. The vibration after the impact was measured by high-speed 3D digital image correlation and employed for full-field operational modal analysis. Multiple modes were characterized in a wide spectrum, exploiting the advantages of the full-field noninvasive techniques. These results described a consistent modal behavior of the panel along with good indicators of mode separation given by the auto modal assurance criterion (Auto-MAC). Hence, it illustrates the possibility of performing these dynamic characterizations in a single test, offering additional information while reducing time and investment during the validation of these structures.


2019 ◽  
Vol 794 ◽  
pp. 202-207
Author(s):  
Rafea Dakhil Hussein ◽  
Dong Ruan ◽  
Guo Xing Lu ◽  
Jeong Whan Yoon ◽  
Zhan Yuan Gao

Carbon fibre composite tubes have high strength to weight ratios and outstanding performance under axial crushing. In this paper, square CFRP tubes and aluminium sheet-wrapped CFRP tubes were impacted by a drop mass to investigate the effect of loading velocity on the energy absorption of CFRP/aluminium tubes. A comparison of the quasi-static and dynamic crushing behaviours of tubes was made in terms of deformation mode, peak crushing force, mean crushing force, energy absorption and specific energy absorption. The influence of the number of aluminium layers that wrapped square CFRP tubes on the crushing performance of tubes under axial impact was also examined. Experimental results manifested similar deformation modes of tubes in both quasi-static and dynamic tests. The dynamic peak crushing force was higher than the quasi-static counterpart, while mean crushing force, energy absorption and specific energy absorption were lower in dynamic tests than those in quasi-static tests. The mean crushing force and energy absorption decreased with the crushing velocity and increased with the number of aluminium layers. The impact stroke (when the force starts to drop) decreased with the number of aluminium layers.


Soft Matter ◽  
2021 ◽  
Author(s):  
Siqi Zheng ◽  
Sam Dillavou ◽  
John M. Kolinski

When a soft elastic body impacts upon a smooth solid surface, the intervening air fails to drain, deforming the impactor. High-speed imaging with the VFT reveal rich dynamics and sensitivity to the impactor's elastic properties and the impact velocity.


Author(s):  
Shi Hu ◽  
Huaming Tang ◽  
Shenyao Han

AbstractIn this paper, polyvinyl chloride (PVC) coarse aggregate with different mixing contents is used to solve the problems of plastic pollution, low energy absorption capacity and poor damage integrity, which provides an important reference for PVC plastic concrete used in the initial support structures of highway tunnels and coal mine roadway. At the same time, the energy absorption characteristics and their relationship under different impact loads are studied, which provides an important reference for predicting the energy absorption characteristics of concrete under other PVC aggregate content or higher impact speed. This study replaced natural coarse aggregate in concrete with different contents and equal volume of well-graded flaky PVC particles obtained by crushing PVC soft board. Also, slump, compression, and splitting strength tests, a free falling low-speed impact test of steel balls and a high-speed impact compression test of split Hopkinson pressure bar (SHPB) were carried out. Results demonstrate that the static and dynamic compressive strength decreases substantially, and the elastic modulus and slump decrease slowly with the increase of the mixing amount of PVC aggregate (0–30%). However, the energy absorption rate under low-speed impact and the specific energy absorption per MPa under high-speed impact increase obviously, indicating that the energy absorption capacity is significantly enhanced. Regardless of the mixing amount of PVC aggregate, greater strain rate can significantly enhance the dynamic compressive strength and the specific energy absorption per MPa. After the uniaxial compression test or the SHPB impact test, the relative integrity of the specimen is positively correlated with the mixing amount of PVC aggregate. In addition, the specimens are seriously damaged with the increase of the impact strain rate. When the PVC aggregate content is 20%, the compressive strength and splitting strength of concrete are 33.8 MPa and 3.26 MPa, respectively, the slump is 165 mm, the energy absorption rate under low-speed impact is 89.5%, the dynamic compressive strength under 0.65 Mpa impact air pressure is 58.77 mpa, and the specific energy absorption value per MPa is 13.33, which meets the requirements of shotcrete used in tunnel, roadway support and other impact loads. There is a linear relationship between the energy absorption characteristics under low-speed impact and high-speed impact. The greater the impact pressure, the larger the slope of the fitting straight line. The slope and intercept of the fitting line also show a good linear relationship with the increase of impact pressure. The conclusions can be used to predict the energy absorption characteristics under different PVC aggregate content or higher-speed impact pressure, which can provide important reference for safer, more economical, and environmental protection engineering structure design.


Sign in / Sign up

Export Citation Format

Share Document