Temperature Measurements in Powder-Bed Electron Beam Additive Manufacturing

Author(s):  
Steven Price ◽  
James Lydon ◽  
Ken Cooper ◽  
Kevin Chou

Thermal characteristics such as process temperatures and melt pool sizes offer important information in metal additive manufacturing (AM) technologies such as powder-bed electron beam additive manufacturing (EBAM). In this study, a near infrared (NIR) thermal imager was employed to acquire build surface process temperatures during EBAM fabrications using Ti-6Al-4V powder. Challenges in NIR temperature measurements for EBAM were tackled including compensating temperatures due to the transmission loss and estimating the emissivity of Ti-6Al-4V in its molten state. At a beam speed of about 728 mm/s, a beam current of about 7.2 mA and a diameter of 0.55 mm, the maximum process temperature is on the order of around 2700 °C, and the melt pools have dimensions of about 2.72 mm and 0.72 mm in length and width, respectively.

Author(s):  
Bo Cheng ◽  
Steven Price ◽  
Xibing Gong ◽  
James Lydon ◽  
Kenneth Cooper ◽  
...  

In this paper, the process parameter effects on the thermal characteristics in powder-bed electron beam additive manufacturing (EBAM) using Ti-6Al-4V powder were investigated. The machine-specific setting, called “speed function” (SF) index that controls the beam speed and the beam current during a build, was utilized to evaluate the beam scanning speed effects. EBAM parts were fabricated using different levels of SF index (20 to 65) and build surface morphology and part microstructures were examined. A near infrared (NIR) thermal imager was used for temperatures measurements during the EBAM process. In addition, a thermal model previously developed was employed for temperature predictions and comparison with the experimental results. The major results are summarized as follows. The SF index noticeably affects the thermal characteristics in EBAM, e.g., a melt pool length of 1.72 mm vs. 1.26 mm for SF20 and SF65, respectively, at the 24.43 mm build height. This is because the higher the speed function index, the higher the beam speed, which reduces the energy density input and results in a lower process temperature. For the surface conditions and part microstructures, in general, a higher SF index tends to produce parts of rougher surfaces with more residual porosity features and large β grain columnar widths.


Author(s):  
Bo Cheng ◽  
Steven Price ◽  
James Lydon ◽  
Kenneth Cooper ◽  
Kevin Chou

Powder-bed beam-based metal additive manufacturing (AM) such as electron beam additive manufacturing (EBAM) has a potential to offer innovative solutions to many challenges and difficulties faced in the manufacturing industry. However, the complex process physics of EBAM has not been fully understood, nor has process metrology such as temperatures been thoroughly studied, hindering part quality consistency, efficient process development and process optimizations, etc., for effective EBAM usage. In this study, numerical and experimental approaches were combined to research the process temperatures and other thermal characteristics in EBAM using Ti–6Al–4V powder. The objective of this study was to develop a comprehensive thermal model, using a finite element (FE) method, to predict temperature distributions and history in the EBAM process. On the other hand, a near infrared (NIR) thermal imager, with a spectral range of 0.78 μm–1.08 μm, was employed to acquire build surface temperatures in EBAM, with subsequent data processing for temperature profile and melt pool size analysis. The major results are summarized as follows. The thermal conductivity of Ti–6Al–4V powder is porosity dependent and is one of critical factors for temperature predictions. The measured thermal conductivity of preheated powder (of 50% porosity) is 2.44 W/m K versus 10.17 W/m K for solid Ti–6Al–4V at 750 °C. For temperature measurements in EBAM by NIR thermography, a method was developed to compensate temperature profiles due to transmission loss and unknown emissivity of liquid Ti–6Al–4V. At a beam speed of about 680 mm/s, a beam current of about 7.0 mA and a diameter of 0.55 mm, the peak process temperature is on the order around 2700 °C, and the melt pools have dimensions of about 2.94 mm, 1.09 mm, and 0.12 mm, in length, width, and depth, respectively. In general, the simulations are in reasonable agreement with the experimental results with an average error of 32% for the melt pool sizes. From the simulations, the powder porosity is found critical to the thermal characteristics in EBAM. Increasing the powder porosity will elevate the peak process temperature and increase the melt pool size.


Author(s):  
Steven Price ◽  
Bo Cheng ◽  
James Lydon ◽  
Kenneth Cooper ◽  
Kevin Chou

Build part certification has been one of the primary roadblocks for effective usage and broader applications of metal additive manufacturing (AM) technologies including powder-bed electron beam additive manufacturing (EBAM). Process sensitivity to operating parameters, among others such as powder stock variations, is one major source of property scattering in EBAM parts. Thus, it is important to establish quantitative relations between the process parameters and process thermal characteristics that are closely correlated with the AM part properties. In this study, the experimental techniques, fabrications, and temperature measurements, developed in recent work (Cheng et al., 2014, "On Process Temperature in Powder-Bed Electron Beam Additive Manufacturing: Model Development and Experimental Validation," ASME J. Manuf. Sci. Eng., (in press)) were applied to investigate the process parameter effects on the thermal characteristics in EBAM with Ti-6Al-4 V powder, using the system-specific setting called “speed function (SF)” index that controls the beam speed and the beam current during a build. EBAM parts were fabricated using different levels of SF index (20–65) and examined in the part surface morphology and microstructures. In addition, process temperatures were measured by near infrared (NIR) thermography with further analysis of the temperature profiles and the melt pool size. The thermal model, also developed in recent work, was further employed for EBAM temperature predictions, and then compared with the experimental results. The major results are summarized as follows. SF index noticeably affects the thermal characteristics in EBAM, e.g., a melt pool length of 1.72 mm and 1.26 mm for SF20 and SF65, respectively, at 24.43 mm build height. SF setting also strongly affects the EBAM part quality including the surface morphology, surface roughness and part microstructures. In general, a higher SF index tends to produce parts of rougher surfaces with more pore features and large β grain columnar widths. Increasing the beam speed will reduce the peak temperatures, also reduce the melt pool sizes. Simulations conducted to evaluate the beam speed effects are in reasonable agreement compared to the experimental measurements in temperatures and melt pools sizes. However, the results of a lower SF case, SF20, show larger differences between the simulations and the experiments, about 58% for the melt pool size. Moreover, the higher the beam current, the higher the peak process temperatures, also the larger the melt pool. On the other hand, increasing the beam diameter monotonically decreases the peak temperature and the melt pool length.


Author(s):  
Bo Cheng ◽  
Kevin Chou

Powder-bed electron beam additive manufacturing has the potential to be a cost-effective alternative in producing complex-shaped, custom-designed metal parts using various alloys. Material thermal properties have a rather sophisticated effect on the thermal characteristics such as the melt pool geometry in fabrications, impacting the build part quality. The objective of this study is to achieve a quantitative relationship that can correlate the material thermal properties and the melt pool geometric characteristics in the electron beam additive manufacturing process. The motivation is to understand the interactions of material property effect since testing individual properties is insufficient because of the change of almost all thermal properties when switching from one to the other material. In this research, a full-factorial simulation experiment was conducted to include a wide range of the thermal properties and their combinations. A developed finite element thermal model was applied to perform electron beam additive manufacturing process thermal simulations incorporating tested thermal properties. The analysis of variance method was utilized to evaluate different thermal property effects on the simulated melt pool geometry. The major results are summarized as follows. (1) The material melting point is the most dominant factor to the melt pool size. (2) The role of the material thermal conductivity may outweigh the melting point and strongly affects the melt pool size, if the thermal conductivity is very high. (3) Regression equations to correlate the material properties and the melt pool dimension and shape have been established, and the regression-predicted results show a reasonable agreement with the simulation results for tested real-world materials. However, errors still exist for materials with a small melt pool such as copper.


Author(s):  
M Shafiqur Rahman ◽  
Paul J. Schilling ◽  
Paul D. Herrington ◽  
Uttam K. Chakravarty

Electron beam additive manufacturing (EBAM) is a powder-bed fusion additive manufacturing (AM) technology that can make full density metallic components using a layer-by-layer fabrication method. To build each layer, the EBAM process includes powder spreading, preheating, melting, and solidification. The quality of the build part, process reliability, and energy efficiency depends typically on the thermal behavior, material properties, and heat source parameters involved in the EBAM process. Therefore, characterizing those properties and understanding the correlations among the process parameters are essential to evaluate the performance of the EBAM process. In this study, a three-dimensional computational fluid dynamics (CFD) model with Ti-6Al-4V powder was developed incorporating the temperature-dependent thermal properties and a moving conical volumetric heat source with Gaussian distribution to conduct the simulations of the EBAM process. The melt pool dynamics and its thermal behavior were investigated numerically, and results for temperature profile, melt pool geometry, cooling rate and variation in density, thermal conductivity, specific heat capacity, and enthalpy were obtained for several sets of electron beam specifications. Validation of the model was performed by comparing the simulation results with the experimental results for the size of the melt pool.


Author(s):  
M. Shafiqur Rahman ◽  
Paul J. Schilling ◽  
Paul D. Herrington ◽  
Uttam K. Chakravarty

Electron Beam Additive Manufacturing (EBAM) is one of the emerging additive manufacturing (AM) technologies that is uniquely capable of making full density metallic components using layer-by-layer fabrication method. To build each layer, the process includes powder spreading, pre-heating, melting, and solidification. The thermal and material properties involved in the EBAM process play a vital role to determine the part quality, reliability, and energy efficiency. Therefore, characterizing the properties and understanding the correlations among the process parameters are incumbent to evaluate the performance of the EBAM process. In this study, a three dimensional computational fluid dynamics (CFD) model with Ti-6Al-4V powder has been developed incorporating the temperature-dependent thermal properties and a moving conical volumetric heat source with Gaussian distribution to conduct the simulations of the EBAM process. The melt-pool dynamics and its thermal behavior have been investigated numerically using a CFD solver and results for temperature profile, cooling rate, variation in density, thermal conductivity, specific heat capacity, and enthalpy have been obtained for a particular set of electron beam specifications.


Author(s):  
Bo Cheng ◽  
Kevin Chou

Powder-bed electron beam additive manufacturing (EBAM) has emerged as a cost-effective process for many industrial applications. Intuitively, EBAM would not require support structures for overhang geometry because the powder bed would self-support the overhang weight. However, without a proper support structure, overhang warping actually occurs in practices. In this study, a two dimensional (2D) finite element (FE) model was developed to study the thermomechanical process of EBAM. The model was applied to evaluate (1) the process parameter effect, (2) the overhang and support configuration effect, and (3) the powder porosity effect on overhang deformations. The major results are summarized as follows. (1) Increasing the beam speed and diameter will result in less deformation in an overhang area, while increasing the beam current will worsen the deformation condition. (2) A smaller tilt angle will cause a larger overhang deformation. (3) A support column, even placed away from the solid substrate side, will minimize overhang deformations. (4) An anchor-free solid piece beneath the overhang can reduce the deformation with an appropriate gap. (5) A lower powder porosity level may alleviate overhang deformations.


Author(s):  
M. Shafiqur Rahman ◽  
Paul J. Schilling ◽  
Paul D. Herrington ◽  
Uttam K. Chakravarty

The powder-bed electron beam additive manufacturing (EBAM) process is one of the relatively new additive manufacturing (AM) technologies in which the metal powder is melted in a vacuum environment utilizing a high-energy heat source to fabricate metallic parts in a layer by layer manner. Different metallic alloys (especially, high entropy alloys such as Ti-6Al-4V) have been widely studied as a powder-bed material for the EBAM. Despite the unique advantages of designing complex geometry and tooling-free manufacturing, there are still considerable challenges in the EBAM, e.g., obtaining desired metallurgical behavior, part accuracy, reliability, and quality consistency. Therefore, a better understanding of the thermo-fluid and mechanical properties of the EBAM process is indispensable to meet the challenges. In this study, transient computational fluid dynamics (CFD) modeling of Ti-6Al-4V melt pool has been done using ANSYS Fluent 15.0 to characterize the process parameters associated with the EBAM process including the melt pool geometry, beam power, beam speed, beam diameter, and temperature profile along the melt scan. In fact, the dynamics and the solidification of the melt pool have been investigated numerically and results for cooling rate, variation in density, pressure, velocities, and liquid fraction have been obtained to illustrate the versatility of the analysis.


Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 538
Author(s):  
Dagmar Goll ◽  
Felix Trauter ◽  
Timo Bernthaler ◽  
Jochen Schanz ◽  
Harald Riegel ◽  
...  

Lab scale additive manufacturing of Fe-Nd-B based powders was performed to realize bulk nanocrystalline Fe-Nd-B based permanent magnets. For fabrication a special inert gas process chamber for laser powder bed fusion was used. Inspired by the nanocrystalline ribbon structures, well-known from melt-spinning, the concept was successfully transferred to the additive manufactured parts. For example, for Nd16.5-Pr1.5-Zr2.6-Ti2.5-Co2.2-Fe65.9-B8.8 (excess rare earth (RE) = Nd, Pr; the amount of additives was chosen following Magnequench (MQ) powder composition) a maximum coercivity of µ0Hc = 1.16 T, remanence Jr = 0.58 T and maximum energy density of (BH)max = 62.3 kJ/m3 have been achieved. The most important prerequisite to develop nanocrystalline printed parts with good magnetic properties is to enable rapid solidification during selective laser melting. This is made possible by a shallow melt pool during laser melting. Melt pool depths as low as 20 to 40 µm have been achieved. The printed bulk nanocrystalline Fe-Nd-B based permanent magnets have the potential to realize magnets known so far as polymer bonded magnets without polymer.


Sign in / Sign up

Export Citation Format

Share Document