Conceptual Design of an Active Transtibial Prosthesis Based on Expected Joint and Muscle Forces in a Unilateral Transtibial Amputee: A Modelling Study

Author(s):  
Sagar Joshi ◽  
Abhishek Gupta

Most modern active prostheses try to match the torque generated by the biological ankle in order to assist walking. However, due to the absence of a biarticular component like the gastrocnemius muscle, they are unable to provide complete rehabilitation. In this paper, a conceptual design of a prosthesis, having an active biarticular component is proposed; and it is studied if such a design can help in better rehabilitation of amputees. The muscle and joint forces during walking are predicted for three cases using musculoskeletal models: A healthy person, an Amputee wearing an active uniarticular prosthesis, and an Amputee wearing a prosthesis having active uniarticular as well as biarticular components (proposed design). Based on the required muscle forces and generated joint reaction loads, the proposed model performs better than the uniarticular prostheses.

Author(s):  
Basil Mathai ◽  
Sanjay Gupta

Musculoskeletal loading plays an important role in pre-clinical evaluations of hip implants, in particular, bone ingrowth and bone remodelling. Joint force estimation using musculoskeletal models evolved as a viable alternative to in vivo measurement owing to the development of computational resources. This study investigated the efficiencies of four eminent open-source musculoskeletal models in order to determine the model that predicts the most accurate values of hip joint reaction and muscle forces during daily activities. Seven daily living activities of slow walking, normal walking, fast walking, sitting down, standing up, stair down and stair up were simulated in OpenSim using inverse dynamics method. Model predictions of joint kinematics, kinetics and muscle activation patterns were compared with published results. The estimated values of hip joint reaction force were found to corroborate well with in vivo measurements for each activity. Although the estimated values of hip joint reaction force were within a satisfactory range, overestimation of hip joint reaction force (75% BW of measured value) was observed during the late stance phase of walking cycles for all the models. In case of stair up, stair down, standing up and sitting down activities, the error in estimated values of hip joint reaction force were within ~20% BW of the measured value. Based on the results of our study, the London Lower Extremity Model predicted the most accurate value of hip joint reaction force and therefore can be used for applied musculoskeletal loading conditions for numerical investigations on hip implants.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1804
Author(s):  
Dimitar Stanev ◽  
Konstantinos Filip ◽  
Dimitrios Bitzas ◽  
Sokratis Zouras ◽  
Georgios Giarmatzis ◽  
...  

This study aims to explore the possibility of estimating a multitude of kinematic and dynamic quantities using subject-specific musculoskeletal models in real-time. The framework was designed to operate with marker-based and inertial measurement units enabling extensions far beyond dedicated motion capture laboratories. We present the technical details for calculating the kinematics, generalized forces, muscle forces, joint reaction loads, and predicting ground reaction wrenches during walking. Emphasis was given to reduce computational latency while maintaining accuracy as compared to the offline counterpart. Notably, we highlight the influence of adequate filtering and differentiation under noisy conditions and its importance for consequent dynamic calculations. Real-time estimates of the joint moments, muscle forces, and reaction loads closely resemble OpenSim’s offline analyses. Model-based estimation of ground reaction wrenches demonstrates that even a small error can negatively affect other estimated quantities. An application of the developed system is demonstrated in the context of rehabilitation and gait retraining. We expect that such a system will find numerous applications in laboratory settings and outdoor conditions with the advent of predicting or sensing environment interactions. Therefore, we hope that this open-source framework will be a significant milestone for solving this grand challenge.


2010 ◽  
Vol 37-38 ◽  
pp. 116-121
Author(s):  
Yu Lan Li ◽  
Bo Li ◽  
Su Jun Luo

In the facility layout decisions, the previous general design principle is to minimize material handling costs, and the objective of these old models only considers the costs of loaded trip, without regard to empty vehicle trip costs, which do not meet the actual demand. In this paper, the unequal-sized unidirectional loop layout problem is analyzed, and the model of facility layout is improved. The objective of the new model is to minimize the total loaded and empty vehicle trip costs. To solve this model, a heuristic algorithm based on partheno-genetic algorithms is designed. Finally, an unequal-sized unidirectional loop layout problem including 12 devices is simulated. Comparison shows that the result obtained using the proposed model is 20.4% better than that obtained using the original model.


1991 ◽  
Vol 57 (1) ◽  
pp. 83-91 ◽  
Author(s):  
Norman Kaplan ◽  
Richard R. Hudson ◽  
Masaru Iizuka

SummaryA population genetic model with a single locus at which balancing selection acts and many linked loci at which neutral mutations can occur is analysed using the coalescent approach. The model incorporates geographic subdivision with migration, as well as mutation, recombination, and genetic drift of neutral variation. It is found that geographic subdivision can affect genetic variation even with high rates of migration, providing that selection is strong enough to maintain different allele frequencies at the selected locus. Published sequence data from the alcohol dehydrogenase locus of Drosophila melanogaster are found to fit the proposed model slightly better than a similar model without subdivision.


2008 ◽  
Vol 11 (1) ◽  
pp. 159-171 ◽  
Author(s):  
Itziar Etxebarria ◽  
Pedro Apodaca

The purpose of the study was to confirm a model which proposed two basic dimensions in the subjective experience of guilt, one anxious-aggressive and the other empathic, as well as another dimension associated but not intrinsic to it, namely, the associated negative emotions dimension. Participants were 360 adolescents, young adults and adults of both sexes. They were asked to relate one of the situations that most frequently caused them to experience feelings of guilt and to specify its intensity and that of 9 other emotions that they may have experienced, to a greater or lesser extent, at the same time on a 7-point scale. The proposed model was shown to adequately fit the data and to be better than other alternative nested models. This result supports the views of both Freud and Hoffman regarding the nature of guilt, contradictory only at a first glance.


Author(s):  
Dimitar Stanev ◽  
Konstantinos Filip ◽  
Dimitrios Bitzas ◽  
Sokratis Zouras ◽  
Georgios Giarmatzis ◽  
...  

This study aims to explore the possibility of estimating a multitude of kinematic and dynamic quantities using subject-specific musculoskeletal models in real-time. The framework was designed to operate with marker-based and inertial measurement units enabling extensions far beyond dedicated motion capture laboratories. We present the technical details for calculating the kinematics, generalized forces, muscle forces, joint reaction loads, and predicting ground reaction wrenches during walking. Emphasis was given to reduce computational latency while maintaining accuracy as compared to the offline counterpart. Notably, we highlight the influence of adequate filtering and differentiation under noisy conditions and its importance for consequent dynamic calculations. Real-time estimates of the joint moments, muscle forces, and reaction loads closely resemble OpenSim's offline analyses. Model-based estimation of ground reaction wrenches demonstrates that even a small error can negatively affect other estimated quantities. An application of the developed system is demonstrated in the context of rehabilitation and gait retraining. We expect that such a system will find numerous applications in laboratory settings and outdoor conditions with the advent of predicting or sensing environment interactions. Therefore, we hope that this open-source framework will be a significant milestone for solving this grand challenge.


Author(s):  
Debarun Bhattacharjya ◽  
Tian Gao ◽  
Dharmashankar Subramanian

In multivariate event data, the instantaneous rate of an event's occurrence may be sensitive to the temporal sequence in which other influencing events have occurred in the history. For example, an agent’s actions are typically driven by preceding actions taken by the agent as well as those of other relevant agents in some order. We introduce a novel statistical/causal model for capturing such an order-sensitive historical dependence, where an event’s arrival rate is determined by the order in which its underlying causal events have occurred in the recent past. We propose an algorithm to discover these causal events and learn the most influential orders using time-stamped event occurrence data. We show that the proposed model fits various event datasets involving single as well as multiple agents better than baseline models. We also illustrate potentially useful insights from our proposed model for an analyst during the discovery process through analysis on a real-world political event dataset.


2020 ◽  
Vol 34 (4) ◽  
pp. 387-394
Author(s):  
Soodabeh Amanzadeh ◽  
Yahya Forghani ◽  
Javad Mahdavi Chabok

Kernel extended dictionary learning model (KED) is a new type of Sparse Representation for Classification (SRC), which represents the input face image as a linear combination of dictionary set and extended dictionary set to determine the input face image class label. Extended dictionary is created based on the differences between the occluded images and non-occluded training images. There are four defaults to make about KED: (1) Similar weights are assigned to the principle components of occlusion variations in KED model, while the principle components of the occlusion variations have different weights, which are proportional to the principle components Eigen-values. (2) Reconstruction of an occluded image is not possible by combining only non-occluded images and the principle components (or the directions) of occlusion variations, but it requires the mean of occlusion variations. (3) The importance and capability of main dictionary and extended dictionary in reconstructing the input face image is not the same, necessarily. (4) KED Runtime is high. To address these problems or challenges, a novel mathematical model is proposed in this paper. In the proposed model, different weights are assigned to the principle components of occlusion variations; different weights are assigned to the main dictionary and extended dictionary; an occluded image is reconstructed by non-occluded images and the principle components of occlusion variations, and also the mean of occlusion variations; and collaborative representation is used instead of sparse representation to enhance the runtime. Experimental results on CAS-PEAL subsets showed that the runtime and accuracy of the proposed model is about 1% better than that of KED.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3073 ◽  
Author(s):  
Driss Oulad-Abbou ◽  
Said Doubabi ◽  
Ahmed Rachid

In this paper, a step-by-step description to get a unique three-level boost DC–DC converter (TLBDC) (DC—direct current) small signal model is first presented and validated through simulations and experiments. This model allows for overcoming the usage of two sub-models as in the conventional modeling approach. Based on this model, voltage balance (VB) controllers are designed and VB control analysis is presented. Two VB controllers, namely Proportional Integral (PI) and Fuzzy, were analyzed when the VB control was applied on both TLBDC switches or only one. According to the obtained simulation and experimental results, the proposed model gives an accurate approximation in dynamic, small perturbations around an operating point and steady state modes. Moreover, it has been shown that VB is achieved in a reduced time when VB control is applied on both the TLBDC’s switches. Furthermore, the Fuzzy controller performs better than PI controller for VB control.


Sign in / Sign up

Export Citation Format

Share Document