Validation of the ASVDADD Constraint Selection Algorithm for Effective RCCE Modeling of Natural Gas Ignition in Air

Author(s):  
Luca Rivadossi ◽  
Gian Paolo Beretta

The Rate-Controlled Constrained-Equilibrium (RCCE) model reduction scheme for chemical kinetics provides acceptable accuracies in predicting hydrocarbon ignition delays by solving a smaller number of differential equations than the number of species in the underlying Detailed Kinetic Model (DKM). To yield good approximations, the method requires accurate identification of the rate controlling constraints. Until recently, a drawback of the RCCE scheme has been the absence of a fully automatable and systematic procedure capable of identifying the best constraints for a given range of thermodynamic conditions and a required level of approximation. A recent paper [1] has proposed a new methodology for such identification based on a simple algebraic analysis of the results of a preliminary simulation of the underlying DKM, focused on the behaviour of the degrees of disequilibrium (DoD) of the individual chemical reactions. The new methodology is based on computing an Approximate Singular Value Decomposition of the Actual Degrees of Disequilibrium (ASVDADD) obtained from the DKM simulation. The effectiveness and robustness of the method has been demonstrated in [1] for some cases of methane/oxygen ignition by considering a C1/H/O (29 species/133 reactions) sub-mechanism of the GRI-Mech 3.0 scheme and comparing the results of a DKM simulation with those of RCCE simulations based on increasing numbers of ASVDADD constraints. The RCCE results are in excellent agreement with DKM predictions for relatively small numbers of RCCE constraints. Here we provide a demonstration of the new method for some cases of shock-tube ignition of a natural gas/air mixture, with higher hydrocarbons approximately represented by propane according to the full (53 species/325 reactions) GRI-Mech 3.0 scheme.

2017 ◽  
Vol 140 (5) ◽  
Author(s):  
Luca Rivadossi ◽  
Gian Paolo Beretta

The rate-controlled constrained-equilibrium (RCCE) model reduction scheme for chemical kinetics provides acceptable accuracies in predicting hydrocarbon ignition delays by solving a smaller number of differential equations than the number of species in the underlying detailed kinetic model (DKM). To yield good approximations, the method requires accurate identification of the rate controlling constraints. Until recently, a drawback of the RCCE scheme has been the absence of a systematic procedure capable of identifying optimal constraints for a given range of thermodynamic conditions and a required level of approximation. A recent methodology has proposed for such identification an algorithm based on a simple algebraic analysis of the results of a preliminary simulation of the underlying DKM, focused on the degrees of disequilibrium (DoD) of the individual chemical reactions. It is based on computing an approximate singular value decomposition of the actual degrees of disequilibrium (ASVDADD) obtained from the DKM simulation. The effectiveness and robustness of the method have been demonstrated for methane/oxygen ignition by considering a C1/H/O (29 species/133 reactions) submechanism of the GRI-Mech 3.0 scheme and comparing the results of a DKM simulation with those of RCCE simulations based on increasing numbers of ASVDADD constraints. Here, we demonstrate the new method for shock-tube ignition of a natural gas/air mixture, with higher hydrocarbons approximately represented by propane according to the full (53 species/325 reactions) GRI-Mech 3.0 scheme including NOx formation.


2018 ◽  
Author(s):  
Fatemeh Hadi ◽  
Vreg Yousefian ◽  
Ehsan Sarfaraz ◽  
Gian Paolo Beretta

The Rate-Controlled Constrained-Equilibrium (RCCE) is a model reduction scheme for chemical kinetics. It describes the evolution of a complex chemical system with acceptable accuracy with a number of rate controlling constraints on the associated constrained-equilibrium states of the system, much lower than the number of species in the underlying Detailed Kinetic Model (DKM). Successful approximation of the constrained-equilibrium states requires accurate identification of the constraints. One promising procedure is the fully automatable Approximate Singular Value Decomposition of the Actual Degrees of Disequilibrium (ASVDADD) method that is capable of identifying the best constraints for a given range of thermodynamic conditions and a required level of approximation. ASVDADD is based on simple algebraic analysis of the results of the underlying DKM simulation and is focused on the behavior of the degrees of disequilibrium (DoD) of the individual chemical reactions. In this paper, we propose a method, as part of our work-in-progress efforts, that could expand the applicability of the derived constraints. This method involves running DKM calculations for a wider range of initial conditions, appending the results of all these cases one after the other after normalizing, and finally running the ASVDADD method to get a set of ‘universal’ constraints applicable within that range of conditions. The effectiveness and robustness of the derived constraints is examined in hydrogen/oxygen ignition delay simulations and the results are compared with those obtained from DKM. The proof-of-concept results demonstrate the potential of the method for finding ‘universal’ constraints.


2021 ◽  
pp. 1-25
Author(s):  
Fatemeh Hadi ◽  
Shrabanti Roy ◽  
Omid Askari ◽  
Gian Paolo Beretta

Abstract The Rate-Controlled Constrained-Equilibrium (RCCE) is a model reduction scheme for chemical kinetics. It describes the evolution of a complex chemical system with acceptable accuracy with a number of rate controlling constraints on the associated constrained-equilibrium states of the system, much lower than the number of species in the underlying Detailed Kinetic Model (DKM). Successful approximation of the constrained-equilibrium states requires accurate identification of the constraints. One promising procedure is the fully automatable Approximate Singular Value Decomposition of the Actual Degrees of Disequilibrium (ASVDADD) method that is capable of identifying the best constraints for a given range of thermodynamic conditions and a required level of approximation. ASVDADD is based on simple algebraic analysis of the results of the underlying DKM simulation and is focused on the behavior of the degrees of disequilibrium (DoD) of the individual chemical reactions. In this paper, we introduce an alternative ASVDADD algorithm. Unlike the original ASVDADD algorithm that require the direct computation of the DKM-derived DoDs and the identification of the set of linearly independent reactions, in the alternative algorithm, the components of the overall degree of disequilibrium vector can be computed directly by casting the DKM as an RCCE simulation considering a set of linearly independent constraints equalling the number of chemical species in size. The effectiveness and robustness of the derived constraints from the alternative procedure is examined in hydrogen/oxygen and methane/oxygen ignition delay simulations and the results are compared with those obtained from DKM.


2020 ◽  
Vol 142 (7) ◽  
Author(s):  
Shrabanti Roy ◽  
Omid Askari

Abstract Reduction of the detail chemical kinetic mechanism is important in solving complex combustion simulation. In this work, a model reduction scheme rate-controlled constrained-equilibrium (RCCE) is considered in predicting the oxidation of ethanol. A detail kinetic mechanism by Merinov from Lawrence Livermore National Laboratory (LLNL) is used in modeling this reduction technique. The RCCE method considers constrained equilibrium states which subjected to a lower number of constraints compared to the number of species. It then has to solve a smaller number of differential equations compared to the number of equations required in solving the detailed kinetic model (DKM). The accuracy of this solution depends on the selection of the constraint. A systematic procedure which will help in identifying the constraint at an optimal level of accuracy is an essential for RCCE modeling. A fully automated Approximate Singular Value Decomposition of the Actual Degrees of Disequilibrium (ASVDADD) method is used in this study to derive the constraint for RCCE simulation. ASVDADD uses an algorithm which follows the simple algebraic analysis on results of underlying DKM to find the degree of disequilibrium (DoD) of the individual chemical reactions. The number of constraints which will be used in RCCE simulation can be selected to reduce the number of equations required to solve. In the current work, this ASVDADD method is applied on ethanol oxidation to select the constraint for RCCE simulation. Both DKM and RCCE calculations on ethanol fuel are demonstrated to compare the result of temperature distribution and an ignition delay time for validating the method.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Meku Maruyama ◽  
Riku Matsuura ◽  
Ryo Ohmura

AbstractHydrate-based gas separation technology is applicable to the CO2 capture and storage from synthesis gas mixture generated through gasification of fuel sources including biomass. This paper reports visual observations of crystal growth dynamics and crystal morphology of hydrate formed in the H2 + CO2 + tetrahydropyran (THP) + water system with a target for developing the hydrate-based CO2 separation process design. Experiments were conducted at a temperature range of 279.5–284.9 K under the pressure of 4.9–5.3 MPa. To simulate the synthesis gas, gas composition in the gas phase was maintained around H2:CO2 = 0.6:0.4 in mole fraction. Hydrate crystals were formed and extended along the THP/water interface. After the complete coverage of the interface to shape a polycrystalline shell, hydrate crystals continued to grow further into the bulk of liquid water. The individual crystals were identified as hexagonal, tetragonal and other polygonal-shaped formations. The crystal growth rate and the crystal size varied depending on thermodynamic conditions. Implications from the obtained results for the arrangement of operating conditions at the hydrate formation-, transportation-, and dissociation processes are discussed.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3343 ◽  
Author(s):  
Yi-Fei Pei ◽  
Qing-Zhi Zhang ◽  
Zhi-Tian Zuo ◽  
Yuan-Zhong Wang

Paris polyphylla, as a traditional herb with long history, has been widely used to treat diseases in multiple nationalities of China. Nevertheless, the quality of P. yunnanensis fluctuates among from different geographical origins, so that a fast and accurate classification method was necessary for establishment. In our study, the geographical origin identification of 462 P. yunnanensis rhizome and leaf samples from Kunming, Yuxi, Chuxiong, Dali, Lijiang, and Honghe were analyzed by Fourier transform mid infrared (FT-MIR) spectra, combined with partial least squares discriminant analysis (PLS-DA), random forest (RF), and hierarchical cluster analysis (HCA) methods. The obvious cluster tendency of rhizomes and leaves FT-MIR spectra was displayed by principal component analysis (PCA). The distribution of the variable importance for the projection (VIP) was more uniform than the important variables obtained by RF, while PLS-DA models obtained higher classification abilities. Hence, a PLS-DA model was more suitably used to classify the different geographical origins of P. yunnanensis than the RF model. Additionally, the clustering results of different geographical origins obtained by HCA dendrograms also proved the chemical information difference between rhizomes and leaves. The identification performances of PLS-DA and the RF models of leaves FT-MIR matrixes were better than those of rhizomes datasets. In addition, the model classification abilities of combination datasets were higher than the individual matrixes of rhizomes and leaves spectra. Our study provides a reference to the rational utilization of resources, as well as a fast and accurate identification research for P. yunnanensis samples.


Author(s):  
Amrit Sahu ◽  
A.A.E.S Mohamed ◽  
Snehashish Panigrahy ◽  
Gilles Bourque ◽  
Henry Curran

Abstract New ignition delay time measurements (IDT) of natural gas mixtures enriched with small amounts of n-hexane and n-heptane were performed in a rapid compression machine to interpret the sensitization effect of heavier hydrocarbons on auto-ignition at gas-turbine relevant conditions. The experimental data of natural gas mixtures containing alkanes from methane to n-heptane were carried out over a wide range of temperatures (840-1050 K), pressures (20-30 bar), and equivalence ratios (f = 0.5 and 1.5). The experiments were complemented with numerical simulations using a detailed kinetic model developed to investigate the effect of n-hexane and n-heptane additions. Model predictions show that the addition of even small amounts (1-2%) of n-hexane and n-heptane can lead to an increase in reactivity by ~40-60 ms at a temperature of 700 K. The IDTs of these mixtures decrease rapidly with an increase in the concentration of up to 7.5% but becomes almost independent of the C6/C7 concentration >10%. This sensitization effect of C6 and C7 is also found to be more pronounced in the temperature range 700-900 K compared to that at higher temperatures (>900 K). The reason is attributed to the dependence of IDT primarily on H2O2(+M)??H+?H (+M) at higher temperatures while the fuel-dependent reactions such as H-atom abstraction, RO2 dissociation, or Q OOH+O2 reactions are less important compared to the temperature range 700-900 K, where they are very important.


Author(s):  
Amrit Bikram Sahu ◽  
A. Abd El-Sabor Mohamed ◽  
Snehasish Panigrahy ◽  
Gilles Bourque ◽  
Henry Curran

Abstract New ignition delay time measurements of natural gas mixtures enriched with small amounts of n-hexane and n-heptane were performed in a rapid compression machine to interpret the sensitization effect of heavier hydrocarbons on auto-ignition at gas-turbine relevant conditions. The experimental data of natural gas mixtures containing alkanes from methane to n-heptane were carried out over a wide range of temperatures (840–1050 K), pressures (20–30 bar), and equivalence ratios (φ = 0.5 and 1.5). The experiments were complimented with numerical simulations using a detailed kinetic model developed to investigate the effect of n-hexane and n-heptane additions. Model predictions show that the addition of even small amounts (1–2%) of n-hexane and n-heptane can lead to increase in reactivity by ∼40–60 ms at compressed temperature (TC) = 700 K. The ignition delay time (IDT) of these mixtures decrease rapidly with an increase in concentration of up to 7.5% but becomes almost independent of the C6/C7 concentration beyond 10%. This sensitization effect of C6 and C7 is also found to be more pronounced in the temperature range 700–900 K compared to that at higher temperatures (> 900 K). The reason is attributed to the dependence of IDT primarily on H2O2(+M) ↔ 2ȮH(+M) at higher temperatures while the fuel dependent reactions such as H-atom abstraction, RȮ2 dissociation or Q.OOH + O2 reactions are less important compared to 700–900 K, where they are very important.


2013 ◽  
Author(s):  
Ghassan Nicolas ◽  
Mohammad Janbozorgi ◽  
Hameed Metghalchi

The Rate-Controlled Constrained-Equilibrium (RCCE) has been further developed and applied to model methane/air combustion process. The RCCE method is based on local maximization of entropy or minimization of a relevant free energy at any time during the non-equilibrium evolution of the system subject to a set of constraints. The constraints are imposed by slow rate-limiting reactions. Direct integration of the rate equations for the constraint potentials has been employed. Once the values of the potentials are obtained, the concentration of all species can be calculated. A set of constraints has been developed for methane/air mixtures in the method of Rate-Controlled Constrained-Equilibrium (RCCE). The model predicts the ignition delay times, which have been compared to those predicted by detailed kinetic model (DKM) and with shock tube experimental measurements. The DKM includes 60 H/O/C1–2/N species and 352 reactions. The RCCE model using 16 constraints has been applied for combustion modeling in a wide range of initial temperatures (900–1200 K), pressures (1–50 atmospheres) and fuel-air equivalence ratio (0.6–1.2). The predicted results of using RCCE are within 5% of those of DKM model and are in excellent agreement with experimental measurements in shock tubes.


Author(s):  
Kang Pan ◽  
James S. Wallace

This paper presents a numerical study on fuel injection, ignition and combustion in a direct-injection natural gas (DING) engine with ignition assisted by a shielded glow plug (GP). The shield geometry is investigated by employing different sizes of elliptical shield opening and changing the position of the shield opening. The results simulated by KIVA-3V indicated that fuel ignition and combustion is very sensitive to the relative angle between the fuel injection and the shield opening, and the use of an elliptical opening for the glow plug shield can reduce ignition delay by 0.1∼0.2ms for several specific combinations of the injection angle and shield opening size, compared to a circular shield opening. In addition, the numerical results also revealed that the natural gas ignition and flame propagation will be delayed by lowering a circular shield opening from the fuel jet center plane, due to the blocking effect of the shield to the fuel mixture, and hence it will reduce the DING performance by causing a longer ignition delay.


Sign in / Sign up

Export Citation Format

Share Document