Electro-Mechanical Impedance Assessment of a Bolted Circular Plate Element of a Space Structure

Author(s):  
David Hunter ◽  
Andrei Zagrai

Electro-mechanical impedance diagnostic is one of key structural health monitoring approaches in aerospace structures. Considerable number of studies have demonstrated its efficiency in monitoring bolted joints. This investigation focuses on effect of a bolted boundary on the electro-mechanical impedance response of the space structure. Many space vehicles incorporate cylindrical payloads featuring multiple plates connected with threaded rods. Position of nuts on the threaded rods determine layered structure of the payload. Because of the cylindrical configuration of the payload, internal layers are formed by circular plates bolted to the connection rods. The number of connection rods determines the number of bolted boundary conditions around plate’s circumference. In this case, the boundary of the plate is essentially a mix of bolted and free segments and is not associated with a classical boundary condition. It is suggested that this case may be represented by an elastic boundary conditions with boundary stiffnesses depending on torque applied to each bolted joint. Vibrations of a circular plate with indicated complex boundary conditions were studied in this contribution theoretically and experimentally. As a result of numerical studies, a range of stiffnesses was suggested to model the bolted boundary. An analytical expression for the electro-mechanical impedance of a circular plate was presented and was utilized in the calculation of the response of a circular plate with the complex boundary. Structural damage was modeled as deviation of the stiffness associated with the bolted joint. Experimental studies were carried out to validate results of theoretical investigations. Electro-mechanical impedance signatures of the circular plate with an attached piezoelectric active sensor were collected for different sets of boundary conditions representing theoretical scenarios. Effect of the compromised bolted joint on the electro-mechanical impedance response of the whole circular plate was explored and the analysis of changes due to different conditions of the bolted boundary was provided.

Author(s):  
A. Rabiee ◽  
H. Ghasemnejad ◽  
N. Hitchins ◽  
J. Watson ◽  
J. Roberts ◽  
...  

AbstractIn this paper, advanced finite element (FE) methods are developed to investigate the effect of deceleration on the crash dummy test complied with British Standard Engineering (BS EN 1789). These techniques, which are related to material modelling, joints and contacts, offer an advanced numerical model representing an infant incubator with all complex boundary conditions and design contents. It is shown that the response of an infant incubator is a function of the ratchet straps, the tension on the belts, the belt type and the distance of the belts from the edges of the incubator, which can significantly affect the experienced acceleration, by the infant. The validation process is performed against experimental studies and various case parameters such as crash dummy mass and negative acceleration impulse are discussed in detail. The developed numerical model is capable to predict the behaviour of the crash dummy and the incubator in terms of acceleration, trajectory and kinematics by less than 8% error.


2012 ◽  
Vol 188 ◽  
pp. 231-235
Author(s):  
Fu Hou Xu ◽  
Dong Dong Wen ◽  
Yu Xiang Zhang ◽  
Hua Cheng Li

Based on the coupling characteristic of piezoelectric ceramics (PZT) and electro-mechanical, impedance changes were measured by the impedance analyzer. Aluminum plate’s impedance response under different load conditions was analyzed with electromechanical impedance technique. BP neural networks were established to identify the structural damage status and the RMSDR was calculated as neural network input data, then the networks was trained and validated. Experiment results show that the trained network can successfully identify the structural load state.


Author(s):  
A. M. Shamayev ◽  
M. D. Ozersky

The results of experimental studies of the effect of electron irradiation on K-208 and CMG glasses used for manufacturing protective coatings of solar batteries and thermal control coatings of space vehicles are analyzed. It is shown that the caused electrostatic discharges lead to structural changes in the surfaces of the glasses studied. The goals of further studies of the influence of proton and electronproton effects on the properties of such coatings are outlined. 


1979 ◽  
Vol 46 (1) ◽  
pp. 26-30 ◽  
Author(s):  
J. W. Berglund

The transient dynamic response of an elastic circular plate subjected to a suddenly applied pressure is determined for several edge boundary conditions. The plate boundary is attached to a semi-infinite, radially rigid tube which is filled with an acoustic fluid, and pressure is applied to the in-vacuo side of the plate. The transient solution is determined by using a technique in which the plate is subjected to a periodic pressure function constructed of appropriately signed and time-shifted Heaviside step functions, and by relying on a physical mechanism which returns the plate and fluid near the plate to an unstrained state of rest between pulses. The plate response is presented for a number of radius-to-thickness ratios and edge boundary conditions when interacting with water. Comparisons are also made with solutions obtained using a plane wave approximation to the fluid field.


2014 ◽  
Vol 564 ◽  
pp. 176-181
Author(s):  
S.T. Cheng ◽  
Nawal Aswan Abdul Jalil ◽  
Zamir A. Zulkefli

Vibration based technique have so far been focused on the identification of structural damage. However, not many studies have been conducted on the corrosion identification on pipes. The objective of this paper is to identify corrosion on pipes from vibration measurements. A hollow pipe, 500 mm in length with 63.5 mm in diameter was subjected to impact loading using an impact hammer to identify the natural frequency of the tube in two conditions i) without any corrosion and ii) with an induced localized 40 mm by 40 mm corrosion at the middle of the pipe. The shift of natural frequencies of the structures under free boundary conditions was examined for each node of excitation. The results showed that there is a shift in natural frequency of the pipe, between 3 and 4 Hz near to the corrosion area. It can suggested that that the impact vibration is capable of identifying of localized corrosion on a hollow tube.


2018 ◽  
Vol 38 (2) ◽  
pp. 558-573 ◽  
Author(s):  
Yongqiang Yang ◽  
Zhongmin Wang ◽  
Yongqin Wang

Rotating friction circular plates are the main components of a friction clutch. The vibration and temperature field of these friction circular plates in high speed affect the clutch operation. This study investigates the thermoelastic coupling vibration and stability of rotating friction circular plates. Firstly, based on the middle internal forces resulting from the action of normal inertial force, the differential equation of transverse vibration with variable coefficients for an axisymmetric rotating circular plate is established by thin plate theory and thermal conduction equation considering deformation effect. Secondly, the differential equation of vibration and corresponding boundary conditions are discretized by the differential quadrature method. Meanwhile, the thermoelastic coupling transverse vibrations with three different boundary conditions are calculated. In this case, the change curve of the first two-order dimensionless complex frequencies of the rotating circular plate with the dimensionless angular speed and thermoelastic coupling coefficient are analyzed. The effects of the critical dimensionless thermoelastic coupling coefficient and the critical angular speed on the stability of the rotating circular plate with simply supported and clamped edges are discussed. Finally, the relation between the critical divergence speed and the dimensionless thermoelastic coupling coefficient is obtained. The results provide the theoretical basis for optimizing the structure and improving the dynamic stability of friction clutches.


2021 ◽  
Vol 8 ◽  
Author(s):  
Haibei Xiong ◽  
Lin Chen ◽  
Cheng Yuan ◽  
Qingzhao Kong

Early detection of timber damage is essential for the safety of timber structures. In recent decades, wave-based approaches have shown great potential for structural damage assessment. Current damage assessment accuracy based on sensing signals in the time domain is highly affected by the varied boundary conditions and environmental factors in practical applications. In this research, a novel piezoceramic-based sensing technology combined with a visual domain network was developed to quantitatively evaluate timber damage conditions. Numerical and experimental studies reveal the stress wave propagation properties in different cases of timber crack depths. Through the spectrogram visualization process, all sensing signals in the time domain were transferred to images which contain both time and frequency features of signals collected from different crack conditions. A deep neural network (DNN) was adopted for image training, testing, and classification. The classification results show high efficiency and accuracy for identifying crack conditions for timber structures. The proposed technology can be further integrated with a fielding sensing system to provide real-time monitoring of timber damage in field applications.


Sign in / Sign up

Export Citation Format

Share Document