Experimental Investigations to Study the Effect on Coefficient of Friction and Heat Transfer Coefficient in the Lubricants With Nano Blending

Author(s):  
Lvrsv Prasad Chilamkurti ◽  
Isai Dharma Rao ◽  
K. Santarao

Worm gears are unique in their ability to achieve large speed reductions in a compact space with gear ratios of 20:1, 60:1 and 200:1 or even higher in some cases and have transmission efficiency between 50% and 70%. One of the major drawback in worm drive design is the relative motion between the two mating elements is entirely sliding. This sliding motion continuously expels the lubricant aside leading to higher wear and increase in temperature. This phenomenon leads to high wear and higher temperatures, which are the limiting factors in the worm drives. Nano particles have gained a greater attention in the recent years because of their highly enhanced thermal and tribological properties when blended with conventional lubricants. In the present investigations the addition of Al2O3 nano particles with average particle size of 30 nm in SAE 140 gear oil resulted in reducing the coefficient of friction, wear and enhanced the heat transfer coefficient. It is observed that coefficient of friction is decreased by 8.98%, 10.11% and 16.85% at nano particle volume concentration of 0.1%, 0.2% and 0.5% respectively at room temperature. Frictional force was found reduced by 26.02% at room temperature for 0.5% volume concentration. Further it was also noted 32.25% and 18.55% reduction in frictional force at the temperatures 60°C and 90°C respectively for 0.2% volume concentration. Convective heat transfer coefficient is increased with increasing particle volume concentration and maximum enhancement of 46.35% in heat transfer coefficient observed at 0.5% volume fraction. The results depict that lubricants blended with nano particles exhibit enhanced tribological and heat transfer properties.

2020 ◽  
Vol 9 (1) ◽  
pp. 13-23
Author(s):  
Samir M. Elshamy ◽  
Mohamed T. Abdelghany ◽  
M. R. Salem ◽  
O. E. Abdellatif

The aim of this research is to investigate experimentally the characteristics of the convective heat transfer and exergy analysis of pure water and water based Al2O3 nanofluid through helical coiled tubes (HCTs) and conical coiled tubes (CCTs) inside shell and coil heat exchangers. HCT and CCT fabricated with different coil torsions (λ) ranges from 0.0202 to 0.052 with different two angles (0° and 45°) while have the same curvature ratio (δ = 0.0564). The effects of mean coil torsion, the cone angle and nanoparticles volume concentration on the thermal performance were investigated. Results indicated that the overall heat transfer coefficient (Uov), convection heat transfer coefficient (ht), the tube side Nusselt number (Nut), effectiveness (ɛ) and exergy efficiency (ηex) of nanofluids are higher than those of the pure water at same flow condition, and this increase goes up with the increase in particle volume concentration (ϕ). The results also showed that Uov, ht, Nut, ɛ and ηex increases by decreasing the coil torsion from 0.052 to 0.0202. Correlations for Nut as a function of the investigated parameters are obtained.


2021 ◽  
Vol 5 (5 (113)) ◽  
pp. 6-13
Author(s):  
Sudarmadji Sudarmadji ◽  
Santoso Santoso ◽  
Sugeng Hadi Susilo

The paper discusses the combined methods of increasing heat transfer, effects of adding nanofluids and ultrasonic vibration in the radiator using radiator coolant (RC) as a base fluid. The aim of the study is to determine the effect of nanoparticles in fluids (nanofluid) and ultrasonic vibration on the overall heat transfer coefficient in the radiator. Aluminum oxide nanoparticles of 20–50 nm in size produced by Zhejiang Ultrafine powder & Chemical Co, Ltd China were used, and the volume concentration of the nanoparticles varied from 0.25 %, 0.30 % and 0.35 %. By adjusting the fluid flow temperature of the radiator from 60 °C to 80 °C, the fluid flow rate varies from 7 to 11 lpm. The results showed that the addition of nanoparticles and ultrasonic vibration to the radiator coolant increases the overall heat transfer coefficient by 62.7 % at a flow rate of 10 liter per minute and temperature of 80 °C for 0.30 % particles volume concentration compared to pure RC without vibration. The effect of ultrasonic vibration on pure radiator coolant without vibration increases the overall heat transfer coefficient by 9.8 % from 385.3 W/m2·°C to 423.3 W/m2·°C at a flow rate of 9 liter per minute at a temperature of 70 °C. The presence of particles in the cooling fluid improves the overall heat transfer coefficient due to the effect of ultrasonic vibrations, nanofluids with a volume concentration of 0.25 % and 0.30 % increased about 10.1 % and 15.7 %, respectively, compared to no vibration. While, the effect of nanoparticles on pure radiator coolant at 70 °C enhanced the overall heat transfer coefficient by about 39.6 % at a particle volume concentration of 0.35 % compared to RC, which is 390.4 W/m2·°C to 545.1 W/m2·°C at 70 °C at a flow rate of 10 liter per minute


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Hsien-Hung Ting ◽  
Shuhn-Shyurng Hou

This numerical study is aimed at investigating the forced convection heat transfer and flow characteristics of water-based Al2O3nanofluids inside a horizontal circular tube in the laminar flow regime under the constant wall temperature boundary condition. Five volume concentrations of nanoparticle, 0.1, 0.5, 1, 1.5, and 2 vol.%, are used and diameter of nanoparticle is 40 nm. Characteristics of heat transfer coefficient, Nusselt number, and pressure drop are reported. The results show that heat transfer coefficient of nanofluids increases with increasing Reynolds number or particle volume concentration. The heat transfer coefficient of the water-based nanofluid with 2 vol.% Al2O3nanoparticles is enhanced by 32% compared with that of pure water. Increasing particle volume concentration causes an increase in pressure drop. At 2 vol.% of particle concentration, the pressure drop reaches a maximum that is nearly 5.7 times compared with that of pure water. It is important to note that the numerical results are in good agreement with published experimental data.


2012 ◽  
Vol 11 (05) ◽  
pp. 1250029 ◽  
Author(s):  
P. C. MUKESH KUMAR ◽  
J. KUMAR ◽  
S. SURESH ◽  
K. PRAVEEN BABU

In this experimental investigation, the heat transfer coefficients of a shell and helically coiled tube heat exchanger using Al2O3 /water nanofluid under laminar flow condition were studied. The Al2O3 nanoparticles were characterized by X-Ray diffraction (XRD). The Al2O3 /water nanofluid at 0.1%, 0.4% and 0.8% particle volume concentration were prepared by using two step method. The prepared nanofluid was characterized by scanning electron microscope (SEM). It is observed that the overall heat transfer coefficient, inner heat transfer coefficient and experimental inner Nusselt number increase while increasing particle volume concentration and increasing inner Dean number. The enhancement of overall heat transfer coefficient was found to be 7%, 16.9% and 24.2% at 0.1%, 0.4% and 0.8% Al2O3 /water nanofluid respectively when compared with water. The enhancement of tube side experimental Nusselt number was found to be 17%, 22.9% and 28% at 0.1%, 0.4% and 0.8% particle volume concentration of Al2O3 /water nanofluid respectively when compared with water at fixed Dean number. The tests were conducted in the range of 1600 < De < 2700, and 5200 < Re < 8600 under laminar flow condition and counter flow configuration. These enhancements are due to higher thermal conductivity of nanofluid while increasing particle volume concentration and Brownian motion of nanoparticles. It is studied that there is no negative impact on formation of secondary flow and mixing of fluid when nanofluid passes through the helically coiled tube.


2014 ◽  
Vol 592-594 ◽  
pp. 922-926 ◽  
Author(s):  
Devasenan Madhesh ◽  
S. Kalaiselvam

Analysis of heat transfer behaviour of hybrid nanofluid (HyNF) flow through the tubular heat exchanger was experimentally investigated. In this analysis the effects of thermal characteristics of forced convection, Nusselt number, Peclet number, and overall heat transfer coefficient were investigated.The nanofluid was prepared by dispersing the copper-titania hybrid nanocomposite (HyNC) in the water. The experiments were performed for various nanoparticle volume concentrations addition in the base fluid from the range of 0.1% to 1.0%. The experimental results show that the overall heat transfer coefficient was found to increases maximum by 30.4%, up to 0.7% volume concentration of HyNC.


2013 ◽  
Vol 832 ◽  
pp. 160-165 ◽  
Author(s):  
Mohammad Alam Khairul ◽  
Rahman Saidur ◽  
Altab Hossain ◽  
Mohammad Abdul Alim ◽  
Islam Mohammed Mahbubul

Helically coiled heat exchangers are globally used in various industrial applications for their high heat transfer performance and compact size. Nanofluids can provide excellent thermal performance of this type of heat exchangers. In the present study, the effect of different nanofluids on the heat transfer performance in a helically coiled heat exchanger is examined. Four different types of nanofluids CuO/water, Al2O3/water, SiO2/water, and ZnO/water with volume fractions 1 vol.% to 4 vol.% was used throughout this analysis and volume flow rate was remained constant at 3 LPM. Results show that the heat transfer coefficient is high for higher particle volume concentration of CuO/water, Al2O3/water and ZnO/water nanofluids, while the values of the friction factor and pressure drop significantly increase with the increase of nanoparticle volume concentration. On the contrary, low heat transfer coefficient was found in higher concentration of SiO2/water nanofluids. The highest enhancement of heat transfer coefficient and lowest friction factor occurred for CuO/water nanofluids among the four nanofluids. However, highest friction factor and lowest heat transfer coefficient were found for SiO2/water nanofluids. The results reveal that, CuO/water nanofluids indicate significant heat transfer performance for helically coiled heat exchanger systems though this nanofluids exhibits higher pressure drop.


2012 ◽  
Vol 16 (2) ◽  
pp. 469-480 ◽  
Author(s):  
Hosseinali Soltanipour ◽  
Parisa Choupani ◽  
Iraj Mirzaee

This paper presents a numerical investigation of heat transfer augmentation using internal longitudinal ribs and ?-Al2O3/ water nanofluid in a stationary curved square duct. The flow is assumed 3D, steady, laminar, and incompressible with constant properties. Computations have been done by solving Navier-Stokes and energy equations utilizing finite volume method. Water has been selected as the base fluid and thermo- physical properties of ?- Al2o3/ water nanofluid have been calculated using available correlations in the literature. The effects of Dean number, rib size and particle volume fraction on the heat transfer coefficient and pressure drop have been examined. Results show that nanoparticles can increase the heat transfer coefficient considerably. For any fixed Dean number, relative heat transfer rate (The ratio of the heat transfer coefficient in case the of ?- Al2o3/ water nanofluid to the base fluid) increases as the particle volume fraction increases; however, the addition of nanoparticle to the base fluid is more useful for low Dean numbers. In the case of water flow, results indicate that the ratio of heat transfer rate of ribbed duct to smooth duct is nearly independent of Dean number. Noticeable heat transfer enhancement, compared to water flow in smooth duct, can be achieved when ?-Al2O3/ water nanofluid is used as the working fluid in ribbed duct.


2019 ◽  
Vol 9 ◽  
pp. 184798041987646 ◽  
Author(s):  
XiaoRong Zhou ◽  
Yi Wang ◽  
Kai Zheng ◽  
Haozhong Huang

In this study, the cooling performance of nanofluids in car radiators was investigated. A car radiator, temperature measuring instrument, and other components were used to set up the experimental device, and the temperature of nanofluids passing through the radiator was measured by this device. Three kinds of nanoparticles, γ-Al2O3, α-Al2O3, and ZnO, were added to propylene glycol to prepared nanofluids, and the effects of nanoparticle size and type, volume concentration, initial temperature, and flow rate were tested. The results indicated that the heat transfer coefficients of all nanofluids first increased and then decreased with an increase in volume concentration. The ZnO-propylene glycol nanofluid reached a maximum heat transfer coefficient at 0.3 vol%, and the coefficient decreased by 25.6% with an increase in volume concentration from 0.3 vol% to 0.5 vol%. Smaller particles provided a better cooling performance, and the 0.1 vol% γ-Al2O3-propylene glycol nanofluid had a 19.9% increase in heat transfer coefficient compared with that of α-Al2O3-propylene glycol. An increase in flow rate resulted in a 10.5% increase in the heat transfer coefficient of the 0.5 vol% α-Al2O3-propylene glycol nanofluid. In addition, the experimental temperature range of 40–60°C improved the heat transfer coefficient of the 0.2 vol% ZnO-propylene glycol nanofluid by 46.4%.


2021 ◽  
Vol 25 (Special) ◽  
pp. 2-33-2-38
Author(s):  
Mohammad M. Ali ◽  
◽  
Amer H. Majeed ◽  

The aims of this paper study the effects of two types of nanoparticle on dielectric strength and heat transfer coefficient within mineral oil used in an electrical transformer. These nanoparticles (NPs) including (semi conductive TiO2 and insulating Al2O3), have been prepared with the same size and surface modification, it is shown that nano-particles enhance insulating and thermal properties of mineral oil as well as the degree of enhancement is dependent on the NPs concentration.


Sign in / Sign up

Export Citation Format

Share Document