scholarly journals ENHANCING HEAT TRANSFER COEFFICIENT AND BREAKDOWN STRENGTH OF MINERAL OIL BY (AL2O3 AND TIO2) NANOPARTICLES

2021 ◽  
Vol 25 (Special) ◽  
pp. 2-33-2-38
Author(s):  
Mohammad M. Ali ◽  
◽  
Amer H. Majeed ◽  

The aims of this paper study the effects of two types of nanoparticle on dielectric strength and heat transfer coefficient within mineral oil used in an electrical transformer. These nanoparticles (NPs) including (semi conductive TiO2 and insulating Al2O3), have been prepared with the same size and surface modification, it is shown that nano-particles enhance insulating and thermal properties of mineral oil as well as the degree of enhancement is dependent on the NPs concentration.

Author(s):  
Shijo Thomas ◽  
C. B. Sobhan ◽  
Jaime Taha-Tijerina ◽  
T. N. Narayanan ◽  
P. M. Ajayan

Nanofluids are suspensions or colloids produced by dispersing nanoparticles in base fluids like water, oil or organic fluids, so as to improve their thermo-physical properties. Investigations reported in recent times have shown that the addition of nanoparticles significantly influence the thermophysical properties, such as the thermal conductivity, viscosity, specific heat and density of base fluids. The convective heat transfer coefficient also has shown anomalous variations, compared to those encountered in the base fluids. By careful selection of the parameters such as the concentration and the particle size, it has been possible to produce nanofluids with various properties engineered depending on the requirement. A mineral oil–boron nitride nanofluid system, where an increased thermal conductivity and a reduced electrical conductivity has been observed, is investigated in the present work to evaluate its heat transfer performance under natural convection. The modified mineral oil is produced by chemically dispersing boron nitride nanoparticles utilizing a one step method to obtain a stable suspension. The mineral oil based nanofluid is investigated under transient free convection heat transfer, by observing the temperature-time response of a lumped parameter system. The experimental study is used to estimate the time-dependent convective heat transfer coefficient. Comparisons are made with the base fluid, so that the enhancement in the heat transfer coefficient under natural convection situation can be estimated.


Author(s):  
Hilario Terres ◽  
Sandra Chavez ◽  
Raymundo Lopez ◽  
Arturo Lizardi ◽  
Araceli Lara

In this work, the heating process for apple, eggplant, zucchini and potato by means of evaluation of their thermal properties and the Biot number determined in experimental form is presented. The heating process is carried out using a solar cooker box-type as heating device. The thermal experimental properties determined are conductivity (k), density (D), specific heat (C), diffusivity (Dif) and the Biot number (Bi) for each product evaluated. In the experimentation, temperatures for center and surface in each product and water were measured in controlled conditions. For those measures, a device Compact Fieldpoint and thermocouples placed in the points studied were used. By using correlations with temperature as function, k, D and C were calculated, while by using equations in transitory state for the products modeled as sphere and cylinder was possible to estimate the Biot number after calculation of the heat transfer coefficient for each case. Results indicate the higher value for k, C and Dif correspond to zucchini (0.65 W/m °C, 4084.5 J/kg °C, 1.5 × 10−7 m2), while higher value for D correspond to potato (1197.5 kg/m3). The lowest values for k and C were obtained for potato (0.59 W/m °C, 3658.3 J/kg °C) while lowest values for D and Dif, correspond to zucchini (998.2 kg/m3) and potato (1.45 × 10−7 m2/s) respectively. The maximum and minimum values for Bi corresponded to potato (21.4) and zucchini (0.41) in respective way. The results obtained are very useful in applications for solar energy devices, where estimates for properties are very important to generate new results, for example, numerical simulations. Also, results could be used to evaluate the cooking power in solar cookers when the study object is oriented in that direction.


Kerntechnik ◽  
2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Zhibo Zhang ◽  
Huai-En Hsieh ◽  
Yuan Gao ◽  
Shiqi Wang ◽  
Jia Gao ◽  
...  

Abstract In this study, the pool boiling performance of oxide nanofluid was investigated, the heating surface is a 5 × 30 mm stainless steel heating surface. Three kinds of nanofluids were selected to explore their critical heat flux (CHF) and heat transfer coefficient (HTC), which were TiO2, SiO2, Al2O3. We observed that these nanofluids enhanced CHF compared to R·O water, and Al2O3 case has the most significant enhancement (up to 66.7%), furthermore, the HTC was also enhanced. The number of bubbles in nanofluid case was relatively less than that in R·O water case, but the bubbles were much larger. The heating surface was characterized and it was found that there were nano-particles deposited, and surface roughness decreased. The wettability also decreased with the increase in CHF.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Guo-liang Bai ◽  
Ning-jun Du ◽  
Ya-zhou Xu ◽  
Chao-gang Qin

To reduce energy consumption and protect the environment, a type of hollow shale block with 29 rows of holes was designed and produced. This paper investigated the thermal properties of hollow shale blocks and walls. First, the guarding heat-box method was used to obtain the heat transfer coefficient of the hollow shale block walls. The experimental heat transfer coefficient is 0.726 W/m2·K, which would save energy compared to traditional wall materials. Then, the theoretical value of the heat transfer coefficient was calculated to be 0.546 W/m2·K. Furthermore, the one-dimensional steady heat conduction process for the block and walls was simulated using the finite element analysis software ANSYS. The predicted heat transfer coefficient for the walls was 0.671 W/m2·K, which was in good agreement with the test results. With the outstanding self-insulation properties, this type of hollow shale block could be used as a wall material without any additional insulation measures in masonry structures.


Author(s):  
Ramgopal Varma Ramaraju ◽  
Manikantan Kota ◽  
Hadi Bin Manap ◽  
Vasudeva Rao Veeredhi

Enhancement of heat transfer coefficient continues to be an important research area in various fields of engineering ranging from microelectronics to high powered automobiles. The initial effort in the present research study is to enhance the heat transfer coefficient in a vehicle radiator using nanofluids with high thermal conductivity. The world’s most abundant element ‘Carbon’ astoundingly exists in various structures and one such form is tube commonly known as Carbon Nanotubes (CNTs). Heat transfer enhancement in water and coolant based systems with different concentrations of nano particles (carbon nanotubes) have been investigated from an engineering system perspective. One such system considered is a “SUZUKI (800CC) - CAR RADIATOR”, cooling circuit using different nanofluids to replace the conventional engine coolant. In the present study, the effect of nano-fluid heat transfer to enhance in water and coolant based systems with multi walled carbon nanotubes has been investigated. The improvement of heat transfer when compared to water, coolant (water + ethylene glycol 60:40) and water with MWCNTS and coolant with MWCNTS has been studied. It has been observed that there is an enhancement of heat transfer up to 30% when coolant and CNTS are used as a cooling medium.


Author(s):  
Lvrsv Prasad Chilamkurti ◽  
Isai Dharma Rao ◽  
K. Santarao

Worm gears are unique in their ability to achieve large speed reductions in a compact space with gear ratios of 20:1, 60:1 and 200:1 or even higher in some cases and have transmission efficiency between 50% and 70%. One of the major drawback in worm drive design is the relative motion between the two mating elements is entirely sliding. This sliding motion continuously expels the lubricant aside leading to higher wear and increase in temperature. This phenomenon leads to high wear and higher temperatures, which are the limiting factors in the worm drives. Nano particles have gained a greater attention in the recent years because of their highly enhanced thermal and tribological properties when blended with conventional lubricants. In the present investigations the addition of Al2O3 nano particles with average particle size of 30 nm in SAE 140 gear oil resulted in reducing the coefficient of friction, wear and enhanced the heat transfer coefficient. It is observed that coefficient of friction is decreased by 8.98%, 10.11% and 16.85% at nano particle volume concentration of 0.1%, 0.2% and 0.5% respectively at room temperature. Frictional force was found reduced by 26.02% at room temperature for 0.5% volume concentration. Further it was also noted 32.25% and 18.55% reduction in frictional force at the temperatures 60°C and 90°C respectively for 0.2% volume concentration. Convective heat transfer coefficient is increased with increasing particle volume concentration and maximum enhancement of 46.35% in heat transfer coefficient observed at 0.5% volume fraction. The results depict that lubricants blended with nano particles exhibit enhanced tribological and heat transfer properties.


2021 ◽  
Vol 12 (2) ◽  
pp. 2618-2628

The thermal behavior of aluminium oxide-water nanofluid in a double pipe carbon steel heat exchanger was investigated in the present study. The overall heat transfer coefficient, Nusselt, and heat transfer coefficient of nanofluid were compared with the base fluid. The volume fraction of the nanoparticles was 1%. By adding nanoparticles to the fluid, the thermal properties of the base fluid improved significantly. The hot and cold fluid flow was considered counter-current, and the nanofluid was pumped into the inner tube and once into the outer tube, and the flow rate of each fluid was 0.05 kg/s. The convective heat transfer and the overall heat transfer coefficient enhanced 94% and 253% for the hot fluid flow in the outer tube and 308 % and 144% for the hot fluid flow in the inner tube, respectively. The pressure drop calculations also showed that the pressure drop would not change significantly when using nanofluid.


Author(s):  
Amrid Mammeri ◽  
Farid Bakir ◽  
Smaine Kouidri ◽  
Lionel Coutancier ◽  
Jean-Christophe Bonnin

This work is a comparative experimental study of two ways of heat transfer intensification inside the cold plate of an Indirect Liquid Cooled IT Server. The first way is classical, as surface extension or heat transfer coefficient enhancement by adding fins, turbulators, or surface roughness modification. The second is more recent, it is about using nanofluids. For comparison purpose, we have defined three criteria: thermal performance, hydraulic performance, and efficiency. According to those parameters, classical methods have shown better performances comparatively to nanofluids.


Sign in / Sign up

Export Citation Format

Share Document