Simulation and Experiment Research on Squeeze Casting Combined With Forging of Automobile Control Arm

Author(s):  
Liang Zhenglong ◽  
Zhang Qi

Aim to improve mechanical properties of the casting aluminum components, a novel process that combined squeeze casting with local forging was proposed. THERCAST® and FORGE® were used to simulate the combined forming process of the automobile control arm. The effects of pouring rate, forging temperature and T6 heat treatment on microstructure evolution and mechanical properties of the samples formed by this combined process were investigated. The results showed that the pouring rate and forging temperature have a negligible effect on microstructure of those samples. The combined process of squeeze casting and forging could obviously refine microstructure, eliminate porosity and improve micro-hardness. After T6 heat treatment, the Si particles were dramatically spheroidized, and the micro-hardness was improved.

2007 ◽  
Vol 344 ◽  
pp. 383-390 ◽  
Author(s):  
Marion Merklein ◽  
Uwe Vogt

Tailored Heat Treated Blanks (THTB) are blanks that exhibit locally different strength specifically optimized for the succeeding forming process. The strength distribution is set by a local, short-term heat treatment modifying the mechanical properties of the material. Hence, THTB allow enhancing forming limits significantly leading to shorter and more robust manufacture process chains. In order to qualify the use of THTB under quasi series conditions, the interdependencies of the blank’s local heat treatment and the entire process chain of the car body manufacture have to be analyzed. In this respect, the impact of a short-term heat treatment on the mechanical properties of AA6181PX, a commonly used aluminum alloy in today’s car bodies, was studied. Also the influence of a short-term heat treatment on the coil lubricant, usually already applied by the material supplier, was given a closer look. Based on these experiments process restrictions for the application of THTB in an industrial automotive environment were derived and a process window for the THTB design was set up. In conclusion, strategies were defined how to enhance the found process boundaries leading to a more robust process window.


2019 ◽  
Vol 38 (2019) ◽  
pp. 892-896 ◽  
Author(s):  
Süleyman Tekeli ◽  
Ijlal Simsek ◽  
Dogan Simsek ◽  
Dursun Ozyurek

AbstractIn this study, the effect of solid solution temperature on microstructure and mechanical properties of the AA7075 alloy after T6 heat treatment was investigated. Following solid solution at five different temperatures for 2 hours, the AA7075 alloy was quenched and then artificially aged at 120∘C for 24 hours. Hardness measurements, microstructure examinations (SEM+EDS, XRD) and tensile tests were carried out for the alloys. The results showed that the increased solid solution temperature led to formation of precipitates in the microstructures and thus caused higher hardness and tensile strength.


2018 ◽  
Vol 153 ◽  
pp. 01001
Author(s):  
Maya Putri Agustianingrum ◽  
Nuzulian Akbar Arandana ◽  
Risly Wijanarko ◽  
Bondan Tiara Sofyan

In order to produce structural products, Al-Zn-Mg alloys undergo various forming processes. Problems that are usually found in the forming process include peripheral coarse grain (PCG) and hot tearing which decrease mechanical properties and corrosion resistance of the alloys. Addition of microalloying element such as chromium (Cr) is an alternative to overcome these problems. The presence of Cr in Al-Zn-Mg alloys supresses the grain growth by preventing excess recrystallization. In this research 0.9 wt. % Cr was added to Al-4.5Zn-1.5Mg alloy and the deformation behaviour as well as subsequent recrystallization was observed. The alloy was fabricated by squeeze casting followed by homogenization at 400 °C for 4 h. The samples were cold rolled for 5, 10, and 20 %. The 20 % deformed samples were then annealed at 300, 400, and 500 °C for 2 h. Material characterization consisted of microstructure analysis using optical microscope and Scanning Electron Microscope (SEM) – Energy Dispersive Spectroscopy (EDS), hardness testing using Micro Vicker methods. The results showed that the deformed grain ratio was 1.6, 2.84, and 2.99 in the 5, 10, and 20 % deformed samples, respectively. The elongated dendrites were effective to increase the hardness of the alloy. Recrystallization was not detected during annealing at 300 and 400 °C, but was observed at 500 °C. Whereas, for the samples without Cr addition, recrystallization occurred at 400 °C. It means that the addition of Cr increased the recrystallization temperature of the alloy. It occured because (Al, Zn)7Cr dispersoids with size less than 1 μm impeded the dislocation motion during annealing, so that recrystallization was retarded. On the other hand (Al, Zn)7Cr dispersoids with size more than 1 μm promoted the formation of new grains around them by Particle Stimulated Nucleation (PSN) mechanism. In this case, the fine (Al, Zn)7Cr dominated so that recrystallization was slower.


2020 ◽  
Vol 321 ◽  
pp. 08003
Author(s):  
Yujun Du ◽  
Xianghong Liu ◽  
Jinshan Li ◽  
Wenzhong Luo ◽  
Yongsheng He ◽  
...  

Small button ingots of Ti2AlNb alloys with different contents of Mo, V and Zr were melted by vacuum non-consumable arc furnace. Due to the rapid cooling rate during melting process, only β grains without precipitation were observed in most of the button ingots and no regular phenomenon was found. However, when the samples were heated to β phase region and then furnace cooled to room temperate, different morphologies and quantities of primary α phase and second O phase formed from the β grains of different samples. It is suggested that the morphology of α phase was changed from lamellar to quadrilateral with increasing V and the lath O increased with increasing Zr. Besides, the residual β/B2 phase increased with increasing Mo and V. The EDS results showed that Al and Zr were enriched in α phase whereas Nb, Mo and V were enriched in β/B2 phase. The micro-hardness of these samples before and after heat treatment was detected and the micro-hardness increased with increasing Zr and decreasing Mo and V.


2019 ◽  
Vol 944 ◽  
pp. 64-72
Author(s):  
Qing Feng Yang ◽  
Cun Juan Xia ◽  
Ya Qi Deng

Bulky sample was made by using TIG wire and arc additive manufacturing (WAAM) technology, in which Ф1.6 mm filler wire of in-situ TiB2/Al-Si composites was selected as deposition metal, following by T6 heat treatment. The microstructure and mechanical properties of the bulky sample before and after heat treatment were analyzed. Experimental results showed that the texture of the original samples parallel to the weld direction and perpendicular to the weld direction was similar consisting of columnar dendrites and equiaxed crystals. After T6 heat treatment, the hardness of the sample was increased to 115.85 HV from 62.83 HV, the yield strength of the sample was 273.33 MPa, the average tensile strength was 347.33 MPa, and the average elongation after fracture was 7.96%. Although pore defects existed in the fracture, yet the fracture of the sample was ductile fracture.


2014 ◽  
Vol 606 ◽  
pp. 55-59 ◽  
Author(s):  
R. Senthil ◽  
A. Gnanavelbabu

Magnesium alloys are the very progressive materials whereon is due to improve their end-use properties. Especially, wrought Mg alloys attract attention since they have more advantageous mechanical properties than cast Mg alloys. Investigations were carried out the effects of heat treatment on tensile strength and microstructure of AZ61A magnesium alloy. The AZ61A Mg alloy is solution heat treated at the temperature of 6500F (343°C) for various soaking timing such as 120 min, 240 min and 360 minutes and allowed it cool slowly in the furnace itself. Magnesium alloys usually are heat treated either to improve mechanical properties or as means of conditioning for specific fabrication operations. Special attention had been focused on the analysis of mutual relations existing between the deformation conditions, microstructural parameters, grain size and the achieved mechanical properties. The result after the solution heat treatment, showed remarkably improved hardness, tensile strength and yield strength. It would be appropriate for a forming process namely isostatic forming process.


Sign in / Sign up

Export Citation Format

Share Document