Numerical and Experimental Analysis of Attaching-Mandrel Process Under Multi-Pass Cold Spinning Process on Superalloy GH3030

Author(s):  
Li Zixuan ◽  
Shu Xuedao ◽  
Cen Zewei ◽  
Zhang Song

Abstract The superalloy products formed by multi-pass conventional spinning are widely used in rotary forming parts with complex shapes. As the connection of each forming pass, the attaching-mandrel process has an important influence on forming quality and production efficiency. The hot spinning process is usually adopted in superalloy forming because its poor plasticity in normal temperature, meanwhile, it brings the poor surface quality of the parts and huge energy consumption. For this reason, the cold spinning and the attaching-mandrel process of nickel-base superalloy GH3030 are studied. The combination method of experiment and simulation is used to study the attaching-mandrel process based on one-forward-pass spinning process. The effects of pass pitch and the attaching-mandrel velocity on the tool forces, parts stress field, strain field and wall thickness distribution are analyzed. The microstructure of the part is divided into three layers: outer, middle and inner layer. The grain size of each layer is compared. Then the effect of different pass pitch on the grain structure is clarified. The results show that the reasonable pass pitch and the attaching-mandrel velocity can improve the forming quality and production efficiency. The multi-pass cold spinning process on superalloy GH3030 is feasible. The excessive pass pitch can cause seriously grain elongation, the grain boundaries are blurred, and even cracking.

Author(s):  
Xiao-Jun Lin ◽  
Ting Ge ◽  
Jin Wang ◽  
Guo-Dong Lu

Deformation allocation has significant effects on the process of multi-pass conventional spinning, especially for the curvilinear generatrix parts. Three different patterns of deformation allocation for curvilinear generatrix parts, including equal max deformation, equal arc length, and equal axial distance, are proposed and defined. Roller path profiles are designed based on them respectively. A 3D elastic-plastic finite element model is developed to investigate the effects of deformation allocation on forming quality and efficiency of the multi-pass spinning of curvilinear generatrix parts, based on the designed paths. The results show that a reasonable deformation allocation in each pass can improve the efficiency of the process effectively. The equal max deformation pattern can lead to better wall thickness distribution and forming efficiency. However, the fittability of it is poorer, compared with the others. This phenomenon is more significant with the increase of pass number.


2011 ◽  
Vol 278 ◽  
pp. 168-173 ◽  
Author(s):  
Daniel Huber ◽  
Christof Sommitsch ◽  
Martin Stockinger

Aerospace gas turbine disks operate in an environment of relatively high stresses caused by centrifugal forces and elevated temperatures. Because of the strong mechanical requirements and narrow specifications of such parts not only a correct, defect free final geometry is necessary, but also a defined microstructure. Even though the microstructure evolution during thermo-mechanical processing is well studied and understood for superalloys like IN718, the influences cannot easily be described analytically. Thus simulation tools are used to assure process stability and to optimize design parameters to meet the tough requirements in aerospace industries. Microstructure simulation of IN718 (and other materials) is well established at Bohler Schmiedetechnik GmbH & Co KG and appreciated by its customers. The advent of the newly developed nickel-base superalloy ATI Allvac® 718PlusTM led to extensive investigations and the development of an adapted microstructure model by Bohler Schmiedetechnik GmbH & Co KG and its research partners. Aim of this paper is a comparison of the microstructure evolution in IN718 and ATI Allvac® 718PlusTM during the thermo-mechanical treatment of turbine disks. Influences of process temperature, strain and strain rate on the final grain size are discussed by finite element simulations with a coupled grain structure model. Experimental results from trial forgings are compared with the outcome of the microstructure simulations.


Author(s):  
R. A. Ricks ◽  
Angus J. Porter

During a recent investigation concerning the growth of γ' precipitates in nickel-base superalloys it was observed that the sign of the lattice mismatch between the coherent particles and the matrix (γ) was important in determining the ease with which matrix dislocations could be incorporated into the interface to relieve coherency strains. Thus alloys with a negative misfit (ie. the γ' lattice parameter was smaller than the matrix) could lose coherency easily and γ/γ' interfaces would exhibit regularly spaced networks of dislocations, as shown in figure 1 for the case of Nimonic 115 (misfit = -0.15%). In contrast, γ' particles in alloys with a positive misfit could grow to a large size and not show any such dislocation arrangements in the interface, thus indicating that coherency had not been lost. Figure 2 depicts a large γ' precipitate in Nimonic 80A (misfit = +0.32%) showing few interfacial dislocations.


Author(s):  
J. E. Doherty ◽  
A. F. Giamei ◽  
B. H. Kear ◽  
C. W. Steinke

Recently we have been investigating a class of nickel-base superalloys which possess substantial room temperature ductility. This improvement in ductility is directly related to improvements in grain boundary strength due to increased boundary cohesion through control of detrimental impurities and improved boundary shear strength by controlled grain boundary micros true tures.For these investigations an experimental nickel-base superalloy was doped with different levels of sulphur impurity. The micros tructure after a heat treatment of 1360°C for 2 hr, 1200°C for 16 hr consists of coherent precipitates of γ’ Ni3(Al,X) in a nickel solid solution matrix.


Author(s):  
B. H. Kear ◽  
J. M. Oblak

A nickel-base superalloy is essentially a Ni/Cr solid solution hardened by additions of Al (Ti, Nb, etc.) to precipitate a coherent, ordered phase. In most commercial alloy systems, e.g. B-1900, IN-100 and Mar-M200, the stable precipitate is Ni3 (Al,Ti) γ′, with an LI2structure. In A lloy 901 the normal precipitate is metastable Nis Ti3 γ′ ; the stable phase is a hexagonal Do2 4 structure. In Alloy 718 the strengthening precipitate is metastable γ″, which has a body-centered tetragonal D022 structure.Precipitate MorphologyIn most systems the ordered γ′ phase forms by a continuous precipitation re-action, which gives rise to a uniform intragranular dispersion of precipitate particles. For zero γ/γ′ misfit, the γ′ precipitates assume a spheroidal.


2019 ◽  
Vol 14 ◽  
pp. 155892501989525
Author(s):  
Yu Yang ◽  
Yanyan Jia

Ultrafine crystallization of industrial pure titanium allowed for higher tensile strength, corrosion resistance, and thermal stability and is therefore widely used in medical instrumentation, aerospace, and passenger vehicle manufacturing. However, the ultrafine crystallizing batch preparation of tubular industrial pure titanium is limited by the development of the spinning process and has remained at the theoretical research stage. In this article, the tubular TA2 industrial pure titanium was taken as the research object, and the ultrafine crystal forming process based on “5-pass strong spin-heat treatment-3 pass-spreading-heat treatment” was proposed. Based on the spinning process test, the ultimate thinning rate of the method is explored and the evolution of the surface microstructure was analyzed by metallographic microscope. The research suggests that the multi-pass, medium–small, and thinning amount of spinning causes the grain structure to be elongated in the axial and tangential directions, and then refined, and the axial fiber uniformity is improved. The research results have certain scientific significance for reducing the consumption of high-performance metals improving material utilization and performance, which also promote the development of ultrafine-grain metals’ preparation technology.


Sign in / Sign up

Export Citation Format

Share Document