Influence of Vibration Characteristics of Agricultural Tire on Transfer Characteristics of Lug Excitation Force and Shaft Force

Author(s):  
Katsuhide Fujita ◽  
Takashi Saito ◽  
Mitsugu Kaneko

Abstract The objective of this study is to clarify the vibration generation mechanism of agricultural machinery caused by the interaction between the tire lugs and the road surface. It is important to investigate the lug excitation force occurring on a rolling agricultural tire in order to clarify the vibration generation mechanism. In our previous study, we modelled the agricultural tire as a three-dimensional rigid ring model (SWIFT model). Further, the frequency equations of SWIFT model are derived and the model parameters are identified by minimizing the difference between measured and calculated natural frequencies. In order to identify lug excitation force, shaft displacement and shaft force during rolling motion are measured three-dimensionally by rolling test and lug excitation force in longitudinal, vertical and lateral direction are identified. From the obtained results, shaft force characteristics and lug excitation force characteristics are investigated. As a result, there is a correlation between shaft force and lug excitation force and it has been confirmed that both characteristics are influenced by the vibration characteristics of the tire. However, the transfer characteristics between lug excitation force (as input) and shaft force (as output) are not investigated. In this study, amplitude magnification and phase difference are analyzed as the transfer characteristics of lug excitation force and shaft force. From the obtained results, the influence of vibration characteristics of the tire on transfer characteristics are investigated.

Author(s):  
Katsuhide Fujita ◽  
Takashi Saito ◽  
Mitsugu Kaneko

When agricultural machines are operated on pavements, the lug excitation force occurring on a rolling agricultural tire is primary cause of the vibration. Therefore, it is important to investigate the lug excitation force in order to clarify the vibration generation mechanism. In our previous study, it is considered that the dynamic behavior of a rolling agricultural tire is influenced by the vibration characteristics of the tire. Further, only the rigid modes among the natural modes could affect the rolling tire behavior. So, we modeled the tire as a circular rigid ring supported on an elastic foundation with contact model. This rigid ring model can be valid to investigate the lug excitation force, while it is necessary to measure forces acting on tire shaft in order to estimate the lug excitation force. In this study, the test equipment is modified to measure tire shaft forces at rolling, by improved supporting structure equipped with 6-component force transducers and the shaft force characteristics are investigated. It is confirmed that the vibration characteristics of the tire influence the shaft force characteristics.


2012 ◽  
Vol 591-593 ◽  
pp. 1256-1259
Author(s):  
Long Li ◽  
Zhang He

Embedded sensors are an emerging trend in mobile consumer devices. In this work a new algorithm is derived for the onboard calibration of three-axis magnetometers. The proposed calibration method is written in the sensor frame, and compensates for the combined effect of all linear time-invariant distortions, namely soft iron, hard iron, three-dimensional sensor non-orthogonally, scale factors, null-shift, arbitrary bias, among others. The new algorithm can be separated into two steps: In the first step, obtain the ellipsoid fitting parameters from comparing the difference between the measured value and the actual vector. In a second step, a calibration algorithm is adopted to compensate for magnetometers distortions. According to the model parameters the measured data is corrected to improve the precision of magnetometer. Simulation and experimental results with sensors data are presented and discussed, supporting the application of the algorithm to commercial and military platforms.


Author(s):  
Kenneth H. Downing

Three-dimensional structures of a number of samples have been determined by electron crystallography. The procedures used in this work include recording images of fairly large areas of a specimen at high tilt angles. There is then a large defocus ramp across the image, and parts of the image are far out of focus. In the regions where the defocus is large, the contrast transfer function (CTF) varies rapidly across the image, especially at high resolution. Not only is the CTF then difficult to determine with sufficient accuracy to correct properly, but the image contrast is reduced by envelope functions which tend toward a low value at high defocus.We have combined computer control of the electron microscope with spot-scan imaging in order to eliminate most of the defocus ramp and its effects in the images of tilted specimens. In recording the spot-scan image, the beam is scanned along rows that are parallel to the tilt axis, so that along each row of spots the focus is constant. Between scan rows, the objective lens current is changed to correct for the difference in specimen height from one scan to the next.


1983 ◽  
Vol 218 (1210) ◽  
pp. 119-126 ◽  

The number of iron atoms in the dimeric iron-containing superoxide dismutase from Pseudomonas ovalis and their atomic positions have been determined directly from anomalous scattering measurements on crystals of the native enzyme. To resolve the long-standing question of the total amount of iron per molecule for this class of dismutase, the occupancy of each site was refined against the measured Bijvoet differences. The enzyme is a symmetrical dimer with one iron site in each subunit. The iron position is 9 ņ from the intersubunit interface. The total iron content of the dimer is 1.2±0.2 moles per mole of protein. This is divided between the subunits in the ratio 0.65:0.55; the difference between them is probably not significant. Since each subunit contains, on average, slightly more than half an iron atom we conclude that the normal state of this enzyme is two iron atoms per dimer but that some of the metal is lost during purification of the protein. Although the crystals are obviously a mixture of holo- and apo-enzymes, the 2.9 Å electron density map is uniformly clean, even at the iron site. We conclude that the three-dimensional structures of the iron-bound enzyme and the apoenzyme are identical.


Author(s):  
Christopher J. Arthurs ◽  
Nan Xiao ◽  
Philippe Moireau ◽  
Tobias Schaeffter ◽  
C. Alberto Figueroa

AbstractA major challenge in constructing three dimensional patient specific hemodynamic models is the calibration of model parameters to match patient data on flow, pressure, wall motion, etc. acquired in the clinic. Current workflows are manual and time-consuming. This work presents a flexible computational framework for model parameter estimation in cardiovascular flows that relies on the following fundamental contributions. (i) A Reduced-Order Unscented Kalman Filter (ROUKF) model for data assimilation for wall material and simple lumped parameter network (LPN) boundary condition model parameters. (ii) A constrained least squares augmentation (ROUKF-CLS) for more complex LPNs. (iii) A “Netlist” implementation, supporting easy filtering of parameters in such complex LPNs. The ROUKF algorithm is demonstrated using non-invasive patient-specific data on anatomy, flow and pressure from a healthy volunteer. The ROUKF-CLS algorithm is demonstrated using synthetic data on a coronary LPN. The methods described in this paper have been implemented as part of the CRIMSON hemodynamics software package.


1996 ◽  
Vol 10 (28) ◽  
pp. 1397-1406 ◽  
Author(s):  
AXEL VÖLKER ◽  
PETER KOPIETZ

We use the Lanczos method to calculate the variance σ2(E, ϕ) of the number of energy levels in an energy window of width E below the Fermi energy for noninteracting disordered electrons on a thin three-dimensional ring threaded by an Aharonov–Bohm flux ϕ. We confirm numerically that for small E the flux-dependent part of σ2(E, ϕ) is well described by the Altshuler–Shklovskii-diagram involving two Cooperons. However, in the absence of electron–electron interactions this result cannot be extrapolated to energies E where the energy-dependence of the average density of states becomes significant. We discuss consequences for persistent currents and argue that for the calculation of the difference between the canonical- and grand canonical current it is crucial to take the electron–electron interaction into account.


1976 ◽  
Vol 54 (14) ◽  
pp. 1454-1460 ◽  
Author(s):  
T. Tiedje ◽  
R. R. Haering

The theory of ultrasonic attenuation in metals is extended so that it applies to quasi one and two dimensional electronic systems. It is shown that the attenuation in such systems differs significantly from the well-known results for three dimensional systems. The difference is particularly marked for one dimensional systems, for which the attenuation is shown to be strongly temperature dependent.


2017 ◽  
Vol 284 (1852) ◽  
pp. 20170359 ◽  
Author(s):  
Arjun Nair ◽  
Christy Nguyen ◽  
Matthew J. McHenry

An escape response is a rapid manoeuvre used by prey to evade predators. Performing this manoeuvre at greater speed, in a favourable direction, or from a longer distance have been hypothesized to enhance the survival of prey, but these ideas are difficult to test experimentally. We examined how prey survival depends on escape kinematics through a novel combination of experimentation and mathematical modelling. This approach focused on zebrafish ( Danio rerio ) larvae under predation by adults and juveniles of the same species. High-speed three-dimensional kinematics were used to track the body position of prey and predator and to determine the probability of behavioural actions by both fish. These measurements provided the basis for an agent-based probabilistic model that simulated the trajectories of the animals. Predictions of survivorship by this model were found by Monte Carlo simulations to agree with our observations and we examined how these predictions varied by changing individual model parameters. Contrary to expectation, we found that survival may not be improved by increasing the speed or altering the direction of the escape. Rather, zebrafish larvae operate with sufficiently high locomotor performance due to the relatively slow approach and limited range of suction feeding by fish predators. We did find that survival was enhanced when prey responded from a greater distance. This is an ability that depends on the capacity of the visual and lateral line systems to detect a looming threat. Therefore, performance in sensing, and not locomotion, is decisive for improving the survival of larval fish prey. These results offer a framework for understanding the evolution of predator–prey strategy that may inform prey survival in a broad diversity of animals.


1986 ◽  
Vol 1 (2) ◽  
pp. 15-21 ◽  
Author(s):  
J. B. Cohen

AbstractAlthough there is mounting interest in the measurement of stresses in composite materials after fabrication and/or use, few measurements to date have not taken into account the three dimensional nature of the stress system in such materials. Most data give only the net stress, that is, the difference between principal stresses. A procedure for a more complete measurement (in a reasonable time) is developed here, including the separation of macrostresses and microstresses. If time does not permit a full investigation, measurements of the lattice parameters of the component phases provide a simple way to sample the hydrostatic component due to differential thermal contraction. The Barrett-Predecki method of adding filler is particularly promising for stress measurements in those composites whose component phases do not give appropriate diffraction peaks. This procedure could also be used for monitoring stresses during the useful life of such materials.


Sign in / Sign up

Export Citation Format

Share Document