Development of 3-D Printed Optically Clear Rigid Anatomical Vessels for Particle Image Velocimetry Analysis in Cardiovascular Flow

Author(s):  
Nicholas Stanley ◽  
Ashley Ciero ◽  
William Timms ◽  
Rodward L. Hewlin

Abstract In recent years, blood flow analysis of diseased arterial mock vessels using particle image velocimetry (PIV) has been hampered by the inability to fabricate optically clear anatomical vessel models that realistically replicate the complex morphology of arterial vessels and provide highly resolved flow images of flow tracer particles. The aim of the present work is to introduce an approach for producing optically clear rigid anatomical models that are suitable for PIV analysis using a common 3-D SLA inkjet printing process (using a Formlabs Form 2 3-D printer) and stock clear resin (RS-F2-GPCL-04). By matching the index of refraction (IOR) of the working fluid to the stock clear resin material, and by printing the part in a 45-degree print orientation, a clear anatomical model that allows clear visualization of flow tracer particles can be produced which yields highly resolved flow images for PIV analyses. However, a 45-degree print orientation increases the need for post processing due to an increased amount of printed support material. During post processing, the part must be wet sanded in several steps and surface finished with Novus Plastic Polish 3 Step System to achieve the final surface finish needed to yield high quality flow images. The fabrication methodology of the clear anatomical models is described in detail.

Author(s):  
S C M Yu ◽  
J B Zhao

Flow characteristics in straight tubes with an asymmetric bulge have been investigated using particle image velocimetry (PIV) over a range of Reynolds numbers from 600 to 1200 and at a Womersley number of 22. A mixture of glycerine and water (approximately 40:60 by volume) was used as the working fluid. The study was carried out because of their relevance in some aspects of physiological flows, such as arterial flow through a sidewall aneurysm. Results for both steady and pulsatile flow conditions were obtained. It was found that at a steady flow condition, a weak recirculating vortex formed inside the bulge. The recirculation became stronger at higher Reynolds numbers but weaker at larger bulge sizes. The centre of the vortex was located close to the distal neck. At pulsatile flow conditions, the vortex appeared and disappeared at different phases of the cycle, and the sequence was only punctuated by strong forward flow behaviour (near the peak flow condition). In particular, strong flow interactions between the parent tube and the bulge were observed during the deceleration phase. Stents and springs were used to dampen the flow movement inside the bulge. It was found that the recirculation vortex could be eliminated completely in steady flow conditions using both devices. However, under pulsatile flow conditions, flow velocities inside the bulge could not be suppressed completely by both devices, but could be reduced by more than 80 per cent.


Author(s):  
A Nagao ◽  
K Miura ◽  
S Kitao ◽  
M Horio

AbstractIn order to clarify the mechanism for the generation of cigarette smoke, the combustion mechanism of a burning cigarette during a puff was investigated by focusing on air transfer. In particular, the air flow distribution outside a burning cigarette was observed and related to the aerodynamic effects of the cigarette paper and the puffing rate. The air flow rate was measured by Particle Image Velocimetry (PIV), using olive oil droplets as the tracer particles. It was found that air does not flow into the tip of the burning cigarette and that the air flow was concentrated at the region -2 to 2 mm around the cigarette paper char-line. This behavior was independent of the cigarette paper basis weight. When the puffing rate was changed from 2.5 to 35 mL/s, the air flow was concentrated at a region close to the cigarette paper char-line and the maximum velocity around the cigarette paper char-line increased with the puffing rate.


Author(s):  
Jean Brunette ◽  
Rosaire Mongrain ◽  
Rosaire Mongrain ◽  
Adrian Ranga ◽  
Adrian Ranga ◽  
...  

Myocardial infarction, also known as a heart attack, is the single leading cause of death in North America. It results from the rupture of an atherosclerotic plaque, which occurs in response to both mechanical stress and inflammatory processes. In order to validate computational models of atherosclerotic coronary arteries, a novel technique for molding realistic compliant phantom featuring injection-molded inclusions and multiple layers has been developed. This transparent phantom allows for particle image velocimetry (PIV) flow analysis and can supply experimental data to validate computational fluid dynamics algorithms and hypothesis.


2001 ◽  
Vol 31 (5) ◽  
pp. 519-532 ◽  
Author(s):  
J. C. Béra ◽  
M. Michard ◽  
N. Grosjean ◽  
G. Comte-Bellot

Author(s):  
Eitaro Koyabu ◽  
Tetsuhiro Tsukiji ◽  
Yoshito Matsumura ◽  
Taizo Sato

The simplified test model of the commercial reciprocating compressor for an automotive air-conditioner is used to measure the displacement of the suction valves using a strain gauge and to investigate the velocity distributions of the discharge flow from the valves using the particle image velocimetry system. This paper is focused on the effects of shape of the suction valve on the vibration-reduction. The size of the suction valve hole and the width of the tip of the suction valve are changed as main parameters of the valve shape. First, the size of the conventional valve hole and the width of the tip of the conventional valve are changed and seven new valves are manufactured to reduce the vibration of the valve. Consequently, it is found that one shape of the new valves is the most effective for the vibration-reduction. Next, the influence of the natural frequency on the vibration-reduction is investigated using one shape of the new valves by changing the material and the thickness of the valve. In addition, the relation between the conventional valve and the new valves are also estimated by the pressure loss. Finally, the reason of the vibration-reduction for one shape of the new valves is discussed from the results of the flow analysis around the valve. The vibration-reduction for one shape of the new valves is confirmed by measurement of the displacement of the valve in the reciprocating compressor for the automotive air-conditioner.


Sign in / Sign up

Export Citation Format

Share Document