Enhanced Plasmonic Behavior of Metal Nanoparticles Surrounded With Dielectric Shell

Author(s):  
Anil Yuksel ◽  
Michael Cullinan ◽  
Edward T. Yu ◽  
Jayathi Murthy

Abstract Metal nanoparticles have attracted intense attention due to their unique optical and thermal properties in various next generation applications such as micro-nano electronics and photonics. The near-field confinement between closely packed metal nanoparticles, which is enhanced due to their plasmonic behavior, creates high thermal energy densities under visible to near-infrared wavelength laser irradiation. As metal nanoparticles tend to be oxidized or change shape under laser illumination, resulting in nonlinear optical and thermal behavior, surrounding each metal nanoparticle with a dielectric shell could be a potential way to prevent these effects as well as to engineer their plasmonic behavior. In this study, we investigate energy transport within dimer and 4 nanoparticle (chain) configurations of 50 nm radius Au nanoparticles surrounded by dielectric shells under illumination from various laser sources in different dielectric media.

Author(s):  
Georgy Ermolaev ◽  
D. Grudinin ◽  
Y. Stebunov ◽  
K. Voronin ◽  
Vasyl Kravets ◽  
...  

Abstract Large optical anisotropy observed in a broad spectral range is of paramount importance for efficient light manipulation in countless devices. Although a giant anisotropy was recently observed in the mid-infrared wavelength range, for visible and near-infrared spectral intervals, the problem remains acute with the highest reported birefringence values of 0.8 in BaTiS3 and h-BN crystals. This inspired an intensive search for giant optical anisotropy among natural and artificial materials. Here, we demonstrate that layered transition metal dichalcogenides (TMDCs) provide an answer to this quest owing to their fundamental differences between intralayer strong covalent bonding and weak interlayer van der Walls interaction. To do this, we carried out a correlative far- and near-field characterization validated by first-principle calculations that reveals an unprecedented birefringence of 1.5 in the infrared and 3 in the visible light for MoS2. Our findings demonstrate that this outstanding anisotropy allows for tackling the diffraction limit enabling an avenue for on-chip next-generation photonics.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
G. A. Ermolaev ◽  
D. V. Grudinin ◽  
Y. V. Stebunov ◽  
K. V. Voronin ◽  
V. G. Kravets ◽  
...  

AbstractLarge optical anisotropy observed in a broad spectral range is of paramount importance for efficient light manipulation in countless devices. Although a giant anisotropy has been recently observed in the mid-infrared wavelength range, for visible and near-infrared spectral intervals, the problem remains acute with the highest reported birefringence values of 0.8 in BaTiS3 and h-BN crystals. This issue inspired an intensive search for giant optical anisotropy among natural and artificial materials. Here, we demonstrate that layered transition metal dichalcogenides (TMDCs) provide an answer to this quest owing to their fundamental differences between intralayer strong covalent bonding and weak interlayer van der Waals interaction. To do this, we made correlative far- and near-field characterizations validated by first-principle calculations that reveal a huge birefringence of 1.5 in the infrared and 3 in the visible light for MoS2. Our findings demonstrate that this remarkable anisotropy allows for tackling the diffraction limit enabling an avenue for on-chip next-generation photonics.


2008 ◽  
Vol 8 (11) ◽  
pp. 5887-5895 ◽  
Author(s):  
Chungang Wang ◽  
Ying Chen ◽  
Zhanfang Ma ◽  
Tingting Wang ◽  
Zhongmin Su

A universal and facile approach for the self-assembly of surfactant-coated anisotropic metal nanoparticles on the amino-functionalized planar and spherical surfaces based on electrostatic attraction has been explored. Large-scale and different surface coverage of monolayer film and metallodielectric core–shell nanostructures of anisotropic metal nanoparticles, including Au nanorods, AucoreAgshell nanorods and Ag nanoprisms, have been fabricated. The optical response in the visible and the near infrared (NIR) of resulting nanostructures can be easily controlled by varying the concentration of the anisotropic nanoparticle, the amount of silica particles, and the immersion time of the substrates. Large-scale anisotropic metal nanoparticle monolayer films with subtle control over the surface coverage and tunable plasmon resonance as surface-enhanced Raman spectroscopy (SERS) substrates for probing 4-aminothiophenol were investigated, which exhibited high SERS activity, stability and reproducibility.


2019 ◽  
Vol 21 (8) ◽  
pp. 4240-4245 ◽  
Author(s):  
Jiebo Li ◽  
Yufan Zhang ◽  
Junrong Zheng

Three model systems are designed to investigate energy transport between molecules on metal nanoparticle surfaces.


2003 ◽  
Vol 777 ◽  
Author(s):  
Stefan A. Maier ◽  
Pieter G. Kik ◽  
Luke A. Sweatlock ◽  
Harry A. Atwater ◽  
J. J. Penninkhof ◽  
...  

AbstractWe investigate the optical properties of arrays of closely spaced metal nanoparticles in view of their potential to guide electromagnetic energy with a lateral mode confinement below the diffraction limit of light. Finite-difference time-domain simulations of short arrays of noble metal nanospheres show that electromagnetic pulses at optical frequencies can propagate along the arrays due to near-field interactions between plasmon-polariton modes of adjacent nanoparticles. Near-field microscopy enables the study of energy transport in these plasmon waveguides and shows experimental evidence for energy propagation over a distance of 0.5 νm for plasmon waveguides consisting of spheroidal silver particles fabricated using electron beam lithography.


Author(s):  
Anil Yuksel ◽  
Michael Cullinan ◽  
Edward T. Yu ◽  
Jayathi Murthy

Abstract Near-field electromagnetic coupling between nanoparticles in dielectric media has led to new advances in next generation technologies such as photonic integrated circuits and photonic sintering. Understanding the light confinement between nanoparticles at subwavelength dimensions is vital in such applications. For instance, the wavelength of the incident light, dielectric medium properties, nanoparticle size, interparticle spacing, and relative orientation between the nanoparticles affect the near-field plasmonic interactions that characterize the thermal energy transport. In this study, we perform a field intensity analysis by looking at the relative orientation of gold (Au) and copper (Cu) nanoparticles which have 25, 50 and 100 nm radius under 532 nm laser irradiation in different surrounding medium to understand the thermal energy transport between the nanoparticles at different relative orientations.


2016 ◽  
Vol 191 ◽  
pp. 373-389 ◽  
Author(s):  
S. Sekar ◽  
V. Lemaire ◽  
H. Hu ◽  
G. Decher ◽  
M. Pauly

We report on the fabrication of oriented anisotropic metal nanoparticle thin films made by Grazing Incidence Spraying (GIS) and on the anisotropic plasmonic properties of the resulting thin films. Gold nanorods of two different aspect ratios and silver nanowires were self-assembled as a uniaxially aligned monolayer with the GIS approach. In particular, we examine the influence of the nanowire/nanorod length and diameter on the degree of ordering determined by electron microscopy pictures. Furthermore, we show that the anisotropy of the optical properties (probed by polarized UV-visible-near infrared spectroscopy) strongly depend on the quality of alignment. The prepared monolayer thin films have an orientation order parameter of up to 0.83 for silver nanowires, which is reflected in an optical anisotropy of 0.57 in the UV-visible and 0.76 in the near infrared through the selective excitation of transverse and longitudinal surface plasmon resonance modes. The electronic transport in oriented silver nanowire monolayers is also shown to be highly directional, with the sheet resistance varying over almost an order of magnitude depending on the transport direction. Such anisotropic conductive plasmonic thin films may find applications in various fields like biochemical sensing, energy transport and harvesting or optoelectronic devices.


2012 ◽  
Vol 25 (6) ◽  
pp. 741-746 ◽  
Author(s):  
Tomosumi Kamimura ◽  
Hiroki Muraoka ◽  
Yuki Yamana ◽  
Yoshiaki Matsura ◽  
Hideo Horibe

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Fenghao Sun ◽  
Hui Li ◽  
Shanshan Song ◽  
Fei Chen ◽  
Jiawei Wang ◽  
...  

Abstract Using single-shot velocity map imaging technique, explosion imaging of different ion species ejected from 50 nm SiO2 nanoparticles are obtained excitedly by strong near-infrared and ultraviolet femtosecond laser fields. Characteristic momentum distributions showing forward emission of the ions at low excitation intensities and shock wave behaviors at high intensities are observed. When the excitation intensity is close to the dissociative ionization threshold of the surface molecules, the resulting ion products can be used to image the instant near-field distributions. The underlying dynamics of shock formation are simulated by using a Coulomb explosion model. Our results allow one to distinguish the ultrafast strong-field response of various molecular species in nanosystems and will open a new way for further exploration of the underlying dynamics of laser-and-nanoparticle interactions.


Sign in / Sign up

Export Citation Format

Share Document