Design Strategy for Fixed Sunroof System

Author(s):  
Hailing Huang ◽  
Yuxiang Zhang ◽  
Hua Sui

Abstract Fixed Sunroof System (FSS), which consists of a large size heat-strengthened roof panel glass, locating components, encapsulation, etc., is replacing traditional metal roof panel on vehicle to achieve weight reduction as well as providing a broad vision above passengers. As a result of the roof panel glass surface area and curvature, FSS could not be self-fixed on vehicle bodyside outer by means of its locating components currently and a tooling fixture is needed when the fixed sunroof be assembled to vehicle. Meanwhile, varied status of the interferences between FSS and vehicle outer or inner sheet metal may introduce additional loading forces while assembling. That could involve perceived quality issues on its appearance. At the same time, safety performance of FSS also leads a critical role on replacing traditional metal roof panel. This paper is aimed to present a comprehensive design strategy for FSS to achieve self-fixed to vehicle sheet metal as well as robust and sufficient assembly process. For the part of self-location, the concepts are divided to two major directions: location pins’ layout and pins’ structure. A reasonable layout and a new-developed structure of the location clip are essential to make sure the operators could see the clips clearly when assembly, which also conducive to avoid over-positioning. In addition, the fixed sunroof cannot be a naked glass because of appearance reason and seal function requirement. The relationship between loading force and encapsulation’s structure, material and interference volume distributed on the FSS should be established with the purpose of optimizing assembly process and improving interference performance. This study also develops into detail by experimental and finite element analysis method to figure out the contribution on loading force from encapsulation’s structure, material and interference volume. Moreover, the strength of the FSS can be taken depends on is manufacture process and the shape of the glass. The key elements in manufacture process and the feasibility of further optimization can be identified by means of theoretical in the formation of glass stress. The effect of the fixed sunroof on entire vehicle can be estimated by FE analysis. This paper combines the traditional process with these new-optimized elements, which creates a new manufacture process to achieve a heat-strengthened roof panel glass with lager surface and high rigidity taking the reference of the production process in windshield and backlite. A detection method on glass strength and stiffness can also be figured out during the study in this new manufacture process.

2006 ◽  
Vol 510-511 ◽  
pp. 330-333
Author(s):  
M.C. Curiel ◽  
Ho Sung Aum ◽  
Joaquín Lira-Olivares

Numerical simulations based on Finite Element Analysis (FEA) are widely used to predict and evaluate the forming parameters before performing the physical processes. In the sheet metal industry, there are basically two types of FE programs: the inverse (one-step) programs and the incremental programs. In the present paper, the forming process of the shield case piece (LTA260W1-L05) was optimized by performing simulations with both types of software. The main analyzed parameter was the blankholding force while the rest of the parameters were kept constant. The criteria used to determine the optimum value was based on the Forming Limit Diagram (FLD), fracture and wrinkling of the material, thickness distribution, and the principal strains obtained. It was found that the holding force during the forming process deeply affects the results, and a range of values was established in which the process is assumed to give a good quality piece.


2021 ◽  
pp. 136943322110073
Author(s):  
Erdem Selver ◽  
Gaye Kaya ◽  
Hussein Dalfi

This study aims to enhance the compressive properties of sandwich composites containing extruded polystyrene (XPS) foam core and glass or carbon face materials by using carbon/vinyl ester and glass/vinyl ester composite Z-pins. The composite pins were inserted into foam cores at two different densities (15 and 30 mm). Compression test results showed that compressive strength, modulus and loads of the sandwich composites significantly increased after using composite Z-pins. Sandwich composites with 15 mm pin densities exhibited higher compressive properties than that of 30 mm pin densities. The pin type played a critical role whilst carbon pin reinforced sandwich composites had higher compressive properties compared to glass pin reinforced sandwich composites. Finite element analysis (FE) using Abaqus software has been established in this study to verify the experimental results. Experimental and numerical results based on the capabilities of the sandwich composites to capture the mechanical behaviour and the damage failure modes were conducted and showed a good agreement between them.


2000 ◽  
Author(s):  
S. Jack Hu ◽  
Yufeng Long ◽  
Jaime Camelio

Abstract Assembly processes for compliant non-rigid parts are widely used in manufacturing automobiles, furniture, and electronic appliances. One of the major issues in the sheet metal assembly process is to control the dimensional variation of assemblies throughout the assembly line. This paper provides an overview of the recent development in variation analysis for compliant assembly. First, the unique characteristics of compliant assemblies are discussed. Then, various approaches to variation modeling for compliant assemblies are presented for single station and multi-station assembly lines. Finally, examples are given to demonstrate the applications of compliant assembly variation models.


Manufacturing ◽  
2002 ◽  
Author(s):  
Jun Lian ◽  
Zhongqin Lin ◽  
Fusheng Yao ◽  
Xinmin Lai

In the assembly process of auto-body, variations in the geometrical dimensions of sheet metal parts and fixtures are inevitable. These variations accumulate through the multi-station assembly process to form the dimensional variations of the final products. Compared with the assembly of rigid parts, the assembly process of the elastic parts is more complex because the variation accumulation patterns rely much on the variations of fixture, jointing methods and mechanical deformation. This paper aims at analyzing the variation transformation mechanism and accumulation characteristics for the assembly of sheet metal parts based on the analysis of dimensional coordination relations among parts and fixtures. Finite element method (FEM) and Monte-Carlo Simulation (MCS) were used to analyze the effect of jointing contact on variation transformation, while a state equation was developed to describe the variation accumulation mechanism. The result of the analysis indicates that the main characteristics of elastic assembly jointing are the overlap jointing methods and elastic contacts action. The fact that the variation transform coefficients (VTC) are variable makes the assembly variation distribution Non-Gaussian even if the dimension variation of parts is Gaussian distribution. The analysis conclusions have potential value for more reasonable tolerance synthesis of elastic parts assembly.


2018 ◽  
Vol 783 ◽  
pp. 148-153
Author(s):  
Muhammad Sajjad ◽  
Jithin Ambarayil Joy ◽  
Dong Won Jung

Incremental sheet metal forming, is a non-conventional machining process which offers higher formability, flexibility and low cost of production than the traditional conventional forming process. Punch or tool used in this forming process consecutively forces the sheet to deform locally and ultimately gives the target profile. Various machining parameters, such as type of tool, tool path, tool size, feed rate and mechanical properties of sheet metal, like strength co-efficient, strain hardening index and ultimate tensile strength, effects the forming process and the formability of final product. In this research paper, Single Point Incremental Forming was simulated using Dassault system’s Abaqus 6.12-1 and results are obtained. Results of sheet profile and there change in thickness is investigated. For this paper, we simulated the process in abaqus. The tool diameter and rotational speed is find out for the production of parts through incremental forming. The simulation is done for two type of material with different mechanical properties. Various research papers were used to understand the process of incremental forming and its simulation.


2014 ◽  
Vol 908 ◽  
pp. 282-286
Author(s):  
Wan Rong Wu ◽  
Lin Chen

Drilling frame on TD165CH Down-The-Hole Drill that has large slenderness ratio and be longer than 10m is one component of Down-The-Hole drill which is mainly subjected to load.In the process of drilling, drilling frame is not only subjected to loads which are like tensile, compression and torsion and so on, and be under the influence of impacting and vibration of impactor,the situation of force is complicated.By analysing of working condition of Down-The-Hole drill,there get all kinds of limit states of typical working conditions, and then using Ansys doing finite element analysis, there get distribution of the stress and strain of drilling frame and the result of modal analysis to check whether drilling frame meets the requirements of strength and stiffness or not,and whether it is possible to resonate with the impactor or not.By analysis,Structure strength and stiffness of drilling Frame on TD165CH Down-The-Hole drill meet the requirements of practical engineering, and drilling Frame does not resonate with the impactor.


2018 ◽  
Vol 191 ◽  
pp. 00008
Author(s):  
Ikram Feddal ◽  
Abdellatif Khamlichi ◽  
Koutaiba Ameziane

The use of composite stiffened panels is common in several activities such as aerospace, marine and civil engineering. The biggest advantage of the composite materials is their high specific strength and stiffness ratios, coupled with weight reduction compared to conventional materials. However, any structural system may reach its limit and buckle under extreme circumstances by a progressive local failure of components. Moreover, stiffened panels are usually assembled from elementary parts. This affects the geometric as well as the material properties resulting in a considerable sensitivity to buckling phenomenon. In this work, the buckling behavior of a composite stiffened panel made from carbon Epoxy Prepregs is studied by using the finite element analysis under Abaqus software package. Different plies orientations sets were considered. The initial distributed geometric imperfections were modeled by means of the first Euler buckling mode. The nonlinear Riks method of analysis provided by Abaqus was applied. This method enables to predict more consistently unstable geometrically nonlinear induced collapse of a structure by detecting potential limit points during the loading history. It was found that plies orientations of the composite and the presence of geometric imperfections have huge influence on the strength resistance.


2005 ◽  
Vol 6-8 ◽  
pp. 753-762
Author(s):  
R. Bahloul ◽  
Phillippe dal Santo ◽  
Ali Mkaddem ◽  
A. Potiron

Bending has significant importance in the sheet metal product industry. Moreover, the springback of sheet metal should be taken into consideration in order to produce bent sheet metal parts within acceptable tolerance limits and to solve geometrical variation for the control of manufacturing process. Nowadays, the importance of this problem increases because of the use of sheet-metal parts with high mechanical characteristics (High Strength Low Alloy steel). This work describes robust methods of predicting springback of parts in 3D modelling subjected to bending and unbending deformations. Also the effects of tool geometry in the final shape after springback are discussed. The first part of this paper presents the laboratory experiments in wiping die bending, in which the influence of process variables, such as die shoulder radius, punch-die clearance, punch nose radius and materials properties were discussed. The second part summarises the finite element analysis by using ABAQUS software and compares these results with some experimental data. It appeared that the final results of the FEM simulation are in good agreement with the experimental ones. An optimisation methodology based on the use of experimental design method and response surface technique is proposed in the third part of this paper. That makes it possible to obtain the optimum values of clearance between the punch and the die and the optimum die radius which can reduce the springback without cracking and damage of product.


2021 ◽  
Author(s):  
Prathamesh Baikerikar ◽  
Cameron J Turner

Abstract Parts built using Fused Deposition Modeling (FDM – an additive manufacturing technology) differ from their design model in terms of their microstructure and material properties. These differences lead to a certain amount of ambiguity regarding the structure, strength and stiffness of the final FDM part. Increasing use of FDM parts as end use products, necessitates accurate simulations and analyses during part design. However, analysis methods such as Finite Element Analysis, are used for analysis of continuum models, and may not accurately represent the non-continuous non-linear FDM parts. Therefore, it is necessary to determine the accuracy and precision of FEA for FDM parts. The goal of this study is to compare FEA simulations of the as-built geometries with the experimental tests of actual FDM parts. Dogbone geometries that include different infill patterns are tested under tensile loading and later simulated using FEA. This study found that FEA results are not always an accurate or reliable means of predicting FDM part behaviors.


Sign in / Sign up

Export Citation Format

Share Document