Pipeline Integrity Assessment: Methodology

Author(s):  
Mohammed Riyazuddin Shaik

With ever increasing energy demands, approximately 90 million barrels of oil per day and 3314 billion cubic meters of gas per year are consumed around the world [1]. To meet such huge energy demands a complicated and vast network of offshore and onshore production and distribution pipelines is necessary. Pipelines connect areas that are relatively rich in resources with areas that are demand-hungry but poor in resources. They play a central role in providing to the energy needs of businesses and public, forming the veins and arteries of the Oil and Gas industry. These pipelines are susceptible to damage, both internal and external based on the type of product in the pipeline and the environment in the vicinity of the pipeline i.e. offshore or onshore. The damage to the pipeline needs to be identified and the significance of the damage clearly defined. The inline inspection (ILI) tools help to identify the damage and record the extent and type of damage. Inability to prioritize the damaged areas and carry out necessary intervention to at least curtail the damage may occasionally lead to calamitous consequences. One such example is of a 30-inch Liquid pipeline failure that occurred in Michigan on July 25, 2010. The National Transportation Safety Board (NTSB) reported that the corrosion fatigue cracks that grew and coalesced from corrosion defects resulted in the rupture and prolonged release from the 30-inch oil pipeline [2]. This failure resulted in a revenue loss of approximately $16 million and estimated costs of $767 million for regulatory and professional support in connection with the clean-up operations. Condition assessment of the pipelines as part of the pipeline integrity management system is the primary means through which such catastrophic pipeline system failures could be prevented. This paper presents the methodology that is adopted for “Integrity Assessment” of the pipelines.

2021 ◽  
Author(s):  
Ning Lou ◽  
Ezra Wari ◽  
James Curry ◽  
Kevin McSweeney ◽  
Rick Curtis ◽  
...  

This research identifies key factors, or safety culture categories, that can be used to help describe the safety culture for the offshore oil and gas industry and develop a comprehensive offshore safety culture assessment toolkit for use by the US Gulf of Mexico (GoM) owners and operators. Detailed questionnaires from selected safety culture frameworks of different industries were collected and analyzed to identify important safety culture factors and key questions for assessment. Safety frameworks from different associations were investigated, including the Center for Offshore Safety (COS), Bureau of Safety and Environmental Enforcement (BSEE), and the National Transportation Safety Board (NTSB). The safety culture factors of each of these frameworks were generalized and analyzed. The frequency of the safety culture factors in each framework was analyzed to explore commonality. The literature review and analysis identified a list of common factors among safety culture frameworks.


Author(s):  
E.B. Priyanka ◽  
S. Thangavel ◽  
Priyanka Prabhakaran

Oil and Gas Pipeline (OGP) projects face a wide scope of wellbeing and security Risk Factors (RFs) all around the world, especially in the oil and gas delivering nations having influencing climate and unsampled data. Lacking data about the reasons for pipeline risk predictor and unstructured data about the security of the OGP prevent endeavors of moderating such dangers. This paper, subsequently, means to foster a risk analyzing framework in view of a comprehensive methodology of recognizing, dissecting and positioning the related RFs, and assessing the conceivable pipeline characteristics. Hazard Mitigation Methods (HMMs), which are the initial steps of this approach. A new methodology has been created to direct disappointment investigation of pinhole erosion in pipelines utilizing the typical pipeline risk strategy and erosion climate reenactments during a full life pattern of the pipeline. Hence in the proposed work, manifold learning with rank based clustering algorithm is incorporated with the cloud server for improved data analysis. The probability risk rate is identified from the burst pressure by clustering the normal and leak category to improve the accuracy of the prediction system experimented on the lab-scale oil pipeline system. The numerical results like auto-correlation, periodogram, Laplace transformed P-P Plot are utilized to estimate the datasets restructured by the manifold learning approach. The obtained experimental results shows that the cloud server datasets are clustered with rank prioritization to make proactive decision in faster manner by distinguishing labelled and unlabeled pressure attributes.


2019 ◽  
Vol 7 (11) ◽  
pp. 401 ◽  
Author(s):  
Zhaohui Hong ◽  
Dengfeng Fu ◽  
Wenbin Liu ◽  
Zefeng Zhou ◽  
Yue Yan ◽  
...  

Subsea pipelines are commonly employed in the offshore oil and gas industry to transport high-pressure and high-temperature (HPHT) hydrocarbons. The phenomenon of pipeline walking is a topic that has drawn a great deal of attention, and is related to the on-bottom stability of the pipeline, such as directional accumulation with respect to axial movement, which can threaten the security of the entire pipeline system. An accurate assessment of pipeline walking is therefore necessary for offshore pipeline design. This paper reports a comprehensive suite of numerical analyses investigating the performance of pipeline walking, with a focus on the effect of increasing axial soil resistance on walking rates. Three walking-driven modes (steel catenary riser (SCR) tension, downslope, and thermal transient) are considered, covering a wide range of influential parameters. The variation in walking rate with respect to the effect of increased soil friction is well reflected in the development of the effective axial force (EAF) profile. A method based on the previous analytical solution is proposed for predicting the accumulated walking rates throughout the entire service life, where the concept of equivalent soil friction is adopted.


2015 ◽  
Vol 74 (4) ◽  
Author(s):  
M. K. F. M. Ali ◽  
N. Md. Noor ◽  
N. Yahaya ◽  
A. A. Bakar ◽  
M. Ismail

Pipelines play an extremely important role in the transportation of gases and liquids over long distance throughout the world. Internal corrosion due to microbiologically influenced corrosion (MIC) is one of the major integrity problems in oil and gas industry and is responsible for most of the internal corrosion in transportation pipelines. The presence of microorganisms such as sulfate reducing bacteria (SRB) in pipeline system has raised deep concern within the oil and gas industry. Biocide treatment and cathodic protection are commonly used to control MIC. However, the solution is too expensive and may create environmental problems by being too corrosive. Recently, Ultraviolet (UV) as one of the benign techniques to enhance mitigation of MIC risk in pipeline system has gained interest among researchers. An amount of 100 ml of modified Baar’s medium and 5 ml of Desulfovibrio vulgaris (strain 7577) seeds was grown in 125 ml anaerobic vials with carbon steel grade API 5L-X70 coupons at the optimum temperature of 37°C and pH 9.5 for fifteen days. This was then followed by exposing the medium to UV for one hour. Results from present study showed that UV radiation has the ability to disinfect bacteria, hence minimizing the risk of metal loss due to corrosion in steel pipeline. 


2017 ◽  
Vol 12 (1) ◽  
pp. 112 ◽  
Author(s):  
Leksono Mucharam ◽  
Silvya Rahmawati ◽  
Rizki Ramadhani

Oil and gas industry is one of the most capital-intensive industry in the world. Each step of oil and gas processing starting from exploration, exploitation, up to abandonment of the field, consumes large amount of capital. Optimization in each step of process is essential to reduce expenditure. In this paper, optimization of fluid flow in pipeline during oil transportation will be observed and studied in order to increase pipeline flow performance.This paper concentrates on chemical application into pipeline therefore the chemical can increase overall pipeline throughput or decrease energy requirement for oil transportation. These chemicals are called drag reducing agent, which consist of various chemicals such as surfactants, polymers, nanofluids, fibers, etc. During the application of chemical into pipeline flow system, these chemicals are already proven to decrease pump work for constant flow rate or allow pipeline to transport more oil for same amount of pump work. The first application of drag reducer in large scale oil transportation was in Trans Alaskan Pipeline System which cancel the need to build several pump stations because of the successful application. Since then, more company worldwide started to apply drag reducer to their pipeline system.Several tedious testings on laboratory should be done to examine the effect of drag reducer to crude oil that will be the subject of application. In this paper, one of the testing method is studied and experimented to select the most effective DRA from several proposed additives. For given pipeline system and crude oil type, the most optimum DRA is DRA A for pipeline section S-R and for section R-P is DRA B. Different type of oil and pipeline geometry will require different chemical drag reducer. 


Author(s):  
Debra Tetteh-Wayoe

The cost effective design and construction of liquid pipeline facilities traditionally necessitates the use of bolted joints as opposed to welds. Some of these bolted joints are frequently disassembled and reassembled as part of regular maintenance, while others are assembled at the time of construction and expected to retain a seal for the lifetime of the pipeline. Consequently, the design and installation practices employed for bolted connections are relied upon to produce the same operational life and integrity as welded pipe. In an effort to ensure that the bolted joints used on our pipeline system are as reliable as our welded joints, we investigated industry best practices for flange assembly and the root causes of joint failure. We have completed extensive research of technical literature, including the torquing procedures used in various industries, and performed field-testing on our own system. Generally we have found that: • Flange assembly failures and concerns about this issue are common in the oil and gas industry; • Practices for tightening flanges are inconsistent; and • To accomplish and retain an effective gasket seal, and thus minimize life cycle leaks, one has to consider many factors, including the amount of torque applied to nuts, the stud and nut friction, the type of gasket used, the size of the studs/nuts/flanges, the type of equipment used for tightening, the calibration of the torquing equipment, flange face alignment, and torquing sequence. Using the results of our investigation, we implemented several measures to enhance both the quality and the long-term integrity of our bolted flange connections. This paper describes the results of our investigations, as well as the practices implemented for flange assemblies required for maintenance and new construction activities.


2021 ◽  
Author(s):  
Chinedu Oragwu ◽  
Daniel Molyneux ◽  
Lukeman Lawal ◽  
Stanley Ameh

Abstract Carbon steel pipelines are used to transport hydrocarbons globally because carbon steel is relatively easier to fabricate, safe for use, raw materials are available and less expensive. Amidst these benefits, carbon steel is susceptible to severe corrosion and other anomalies. Pipeline corrosion is a significant concern in the oil and gas industry. It has caused several minor and catastrophic losses of containment with resultant fatalities, environmental pollutions, asset damage, and production downtimes. The increasing failures of in-service pipelines have led the Department of Petroleum Resources (DPR) to intensify regulatory scrutiny of pipeline integrity assessment and management in Nigeria to ensure strict compliance to the regulatory requirements by the Oil Producing Companies. According to DPR Act (Section 2.5.2.1), all pipelines greater than 6" size diameter must be inspected every five (5) years with intelligent pigs (inline inspection tools) that would provide the accurate condition of the pipeline. However, many pipelines in Nigeria are unpiggable or difficult to inspect with intelligent pigs due to the unavailability of pigging facilities (especially in brownfields), pipelines with short bend radiuses, dual diameters, flow parameters, etcetera. This paper explores case studies involving the use of advanced inline inspection technology to conduct inline inspection of difficult-to-inspect dual-diameter pipelines.


Author(s):  
Gustavo Calzada-Orihuela ◽  
Gustavo Urquiza-Beltrán ◽  
Jorge A Ascencio ◽  
Gerardo Reyes-Salgado

Oil and gas industry, worldwide, needs to monitor, control and assess the elements that are involved in the general oil transportation and production processes. However, these processes are not risk free. The project proposes an intelligent support system that provides optimized projections for effective risk management. The project focuses on the development of a set of Genetic Algorithms (GAs), a branch of AI systems that assists to optimize the usage and distribution of resources. GAs will reduce the latent risks and potential dangers as much as possible. The main purpose is to minimize the risk levels in a pipeline segment based on their condition and by detecting optimal variable configurations: their Risk of Failure (RoF), Probability of Failure (PoF), Consequence of Failure (CoF), and their sub elements (threats and impacts). The heuristic results generated by this set of GAs show a significant reduction on the risk assessment measures, by finding “optimized” configurations of these variables.


Author(s):  
Glenn Pettitt ◽  
Philip Pennicott

Bowtie diagrams have become a widely-used method for demonstrating the relationship between the causes and consequences of hazardous events following the identification of Major Accident Hazards (MAHs). They are particularly useful for illustrating how safeguarding measures protect against particular threats or mitigate the various consequences of an incident. Bowtie diagrams have been widely used in a range of industries for over twenty years and are widespread in the upstream oil and gas industry, as well as other high hazard industries such as mining and nuclear. Bowtie diagrams are used for a range of purposes. At their simplest, they provide an overview of the measures in place to prevent and mitigate hazardous events, and as such are valuable additions to training programmes. A bowtie diagram provides an excellent platform to show regulatory authorities, trainees and new employees the various threats to a pipeline system, and what barriers are in place to prevent and control major accidents, such that the risks are as low as reasonably practicable. The bowtie process may be used during design, construction, operations and decommissioning. The bowtie for construction is different to that for design and operations, being more to do with occupational safety rather that loss of containment. However, the construction bowtie diagram still plays a vital role in minimising risk. Whilst the typical failure mechanisms for pipelines are generally well-established during operations, bowties have a key role in informing senior management of the measures in place to reduce risk. Furthermore, a large proportion of major accidents may occur at above ground installations (AGIs), and bowtie diagrams provide a mechanism to help management in the protection of personnel and potentially of nearby populations. For both cross-country pipelines and AGIs, the effectiveness of each barrier can be established to ensure that the risk of loss of containment is minimised. More detailed bowties may be used to assist in identifying safety critical elements (SCEs) or safety critical tasks; developing performance standards and defining process safety performance indicators. Often, the hardware shown by the barriers may be considered as SCEs, particularly in the case of effective barriers, such as vibration detection along the right-of-way (RoW) (prevention) or gas detection at AGIs (recovery). Where such barriers are defined as key to a major threat, the bowtie diagram illustrates the importance of good maintenance systems to ensure that the barriers have a high reliability. Thus, by defining the SCEs in a logical manner, bowties may be a key element in managing the risk from a pipeline system.


Author(s):  
Ashish Khera ◽  
Rajesh Uprety ◽  
Bidyut B. Baniah

The responsibility for managing an asset safely, efficiently and to optimize productivity lies solely with the pipeline operators. To achieve these objectives, operators are implementing comprehensive pipeline integrity management programs. These programs may be driven by a country’s pipeline regulator or in many cases may be “self-directed” by the pipeline operator especially in countries where pipeline regulators do not exist. A critical aspect of an operator’s Integrity Management Plan (IMP) is to evaluate the history, limitations and the key threats for each pipeline and accordingly select the most appropriate integrity tool. The guidelines for assessing piggable lines has been well documented but until recently there was not much awareness for assessment of non-piggable pipelines. A lot of these non-piggable pipelines transverse through high consequence areas and usually minimal historic records are available for these lines. To add to the risk factor, usually these lines also lack any baseline assessment. The US regulators, that is Office of Pipeline Safety had recognized the need for establishment of codes and standards for integrity assessment of all pipelines more than a decade ago. This led to comprehensive mandatory rules, standards and codes for the US pipeline operators to follow regardless of the line being piggable or non-piggable. In India the story has been a bit different. In the past few years, our governing body for development of self-regulatory standards for the Indian oil and gas industry that is Oil Industry Safety Directorate (OISD) recognized a need for development of a standard specifically for integrity assessment of non-piggable pipelines. The standard was formalized and accepted by the Indian Ministry of Petroleum in September 2013 as OISD 233. OISD 233 standard is based on assessing the time dependent threats of External Corrosion (EC) and Internal Corrosion (IC) through applying the non-intrusive techniques of “Direct Assessment”. The four-step, iterative DA (ECDA, ICDA and SCCDA) process requires the integration of data from available line histories, multiple indirect field surveys, direct examination and the subsequent post assessment of the documented results. This paper presents the case study where the Indian pipeline operators took a self-initiative and implemented DA programs for prioritizing the integrity assessment of their most critical non-piggable pipelines even before the OISD 233 standard was established. The paper also looks into the relevance of the standard to the events and other case studies following the release of OISD 233.


Sign in / Sign up

Export Citation Format

Share Document