Measurement of the Constitutive Behavior of Underfill Encapsulants

Author(s):  
M. Saiful Islam ◽  
Jeffrey C. Suhling ◽  
Pradeep Lall

Reliable, consistent, and comprehensive material property data are needed for microelectronic encapsulants for the purpose of mechanical design, reliability assessment, and process optimization of electronic packages. In our research efforts, the mechanical responses of several different capillary flow snap cure underfill encapsulants are being characterized. A microscale tension-torsion testing machine has been used to evaluate the uniaxial tensile stress-strain behavior of underfill materials as a function of temperature, strain rate, specimen dimensions, humidity, thermal cycling exposure, etc. A critical step to achieving accurate experimental results has been the development of a sample preparation procedure that produces mechanical test specimens that reflect the properties of true underfill encapsulant layers. In the developed method, 75–125 μm (3–5 mil) thick underfill uniaxial tension specimens are dispensed and cured using production equipment and the same processing conditions as those used with actual flip chip assemblies. Although several underfills have been examined, this work features results for the mechanical response of a single typical capillary flow snap cure underfill. A three parameter hyperbolic tangent empirical model has been shown to provide accurate fits to the observed underfill nonlinear stress-strain behavior over a range of temperatures and strain rates. In addition, typical creep data are presented.

Author(s):  
Nusrat J. Chhanda ◽  
Jeffrey C. Suhling ◽  
Pradeep Lall

In this work, the viscoplastic mechanical response of a typical underfill encapsulant has been characterized via rate dependent stress-strain testing over a wide temperature range, and creep testing for a large range of applied stress levels and temperatures. A specimen preparation procedure has been developed to manufacture 80 × 5 mm uniaxial tension test samples with a specified thickness of .5 mm. The test specimens are dispensed and cured with production equipment using the same conditions as those used in actual flip chip assembly, and no release agent is required to extract them from the mold. Using the manufactured test specimens, a microscale tension-torsion testing machine has been used to evaluate stress-strain and creep behavior of the underfill material as a function of temperature. Stress-strain curves have been measured at 5 temperatures (25, 50, 75, 100 and 125 C), and strain rates spanning over 5 orders of magnitude. In addition, creep curves have been evaluated for the same 5 temperatures and several stress levels. With the obtained mechanical property data, several viscoelastic and viscoplastic material models have been fit to the data, and optimum constitutive models for subsequent use in finite element simulations have been determined.


2011 ◽  
Vol 675-677 ◽  
pp. 453-456
Author(s):  
Ze Xing Wang ◽  
Jin Hua Jiang ◽  
Nan Liang Chen

In order to investigate the effect of loading rate on the tensile performance, the uniaxial tensile experiments were conducted on universal testing machine under different loading rates (5 mm/min, 10mm/min, 50 mm/min, 100 mm/min and 150 mm/min), and a constant gage length equal to 200mm, resulting in loading strain rate of 4.17×10-4, 8.33×10-4/s, 4.17×10-3/s, 8.33×10-3/s,1.25×10-2/s, and the tensile stress-strain curves were obtained. The experimental results show that the tensile properties of the conveyor belt exhibit obvious rate-dependent behavior. In this paper, the rate sensitivity coefficient varied with loading rate, was calculated, and the nonlinear rate-dependent behavior was also investigated.


2019 ◽  
Vol 141 (4) ◽  
Author(s):  
N. K. Sharma ◽  
M. D. Sarker ◽  
Saman Naghieh ◽  
Daniel X. B. Chen

Bone is a complex material that exhibits an amount of plasticity before bone fracture takes place, where the nonlinear relationship between stress and strain is of importance to understand the mechanism behind the fracture. This brief presents our study on the examination of the stress–strain relationship of bovine femoral cortical bone and the relationship representation by employing the Ramberg–Osgood (R–O) equation. Samples were taken and prepared from different locations (upper, middle, and lower) of bone diaphysis and were then subjected to the uniaxial tensile tests under longitudinal and transverse loading conditions, respectively. The stress–strain curves obtained from tests were analyzed via linear regression analysis based on the R–O equation. Our results illustrated that the R–O equation is appropriate to describe the nonlinear stress–strain behavior of cortical bone, while the values of equation parameters vary with the sample locations (upper, middle, and lower) and loading conditions (longitudinal and transverse).


Author(s):  
Promod R. Chowdhury ◽  
Nusrat J. Chhanda ◽  
Jeffrey C. Suhling ◽  
Pradeep Lall

Microelectronic encapsulants exhibit evolving properties that change significantly with environmental exposures such as isothermal aging and high humidity conditions. In this work, the material behavior changes occurring in underfill materials subjected to moisture exposures in an humidity chamber have been characterized using 60 × 3 × 0.5 mm uniaxial test specimens which were cured with production equipment using the same conditions as those used in actual flip chip assembly. After curing, the samples were divided into two groups and subjected to different preconditioning: (1) no preconditioning, (2) prebaking at 85 C for 24 hours. The fabricated and preconditioned uniaxial test specimens were then exposed in an adjustable thermal and humidity chamber to combined hygrothermal exposures at 85 C and 85% RH for various durations (0, 1, 3, 10, 30, 60 days). After the moisture exposures, a microscale tension-torsion testing machine was used to evaluate the complete stress-strain behavior of the material at room temperature (25 C). In addition, the viscoelastic mechanical response of the underfill encapsulant has also been characterized via creep testing at room temperature for several applied stress levels after the moisture exposures. From the recorded results, it was found that the moisture exposures strongly degrade the mechanical properties of the tested underfill including the initial elastic modulus, ultimate tensile stress, and tensile creep rate. Prebaking was found to increase the initial material properties, but the degradations due to subsequent moisture exposures occurred in a similar manner.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 369
Author(s):  
Xintao Fu ◽  
Zepeng Wang ◽  
Lianxiang Ma

In this paper, some representative hyperelastic constitutive models of rubber materials were reviewed from the perspectives of molecular chain network statistical mechanics and continuum mechanics. Based on the advantages of existing models, an improved constitutive model was developed, and the stress–strain relationship was derived. Uniaxial tensile tests were performed on two types of filled tire compounds at different temperatures. The physical phenomena related to rubber deformation were analyzed, and the temperature dependence of the mechanical behavior of filled rubber in a larger deformation range (150% strain) was revealed from multiple angles. Based on the experimental data, the ability of several models to describe the stress–strain mechanical response of carbon black filled compound was studied, and the application limitations of some constitutive models were revealed. Combined with the experimental data, the ability of Yeoh model, Ogden model (n = 3), and improved eight-chain model to characterize the temperature dependence was studied, and the laws of temperature dependence of their parameters were revealed. By fitting the uniaxial tensile test data and comparing it with the Yeoh model, the improved eight-chain model was proved to have a better ability to predict the hyperelastic behavior of rubber materials under different deformation states. Finally, the improved eight-chain model was successfully applied to finite element analysis (FEA) and compared with the experimental data. It was found that the improved eight-chain model can accurately describe the stress–strain characteristics of filled rubber.


1985 ◽  
Vol 58 (4) ◽  
pp. 830-856 ◽  
Author(s):  
R. J. Cembrola ◽  
T. J. Dudek

Abstract Recent developments in nonlinear finite element methods (FEM) and mechanics of composite materials have made it possible to handle complex tire mechanics problems involving large deformations and moderate strains. The development of an accurate material model for cord/rubber composites is a necessary requirement for the application of these powerful finite element programs to practical problems but involves numerous complexities. Difficulties associated with the application of classical lamination theory to cord/rubber composites were reviewed. The complexity of the material characterization of cord/rubber composites by experimental means was also discussed. This complexity arises from the highly anisotropic properties of twisted cords and the nonlinear stress—strain behavior of the laminates. Micromechanics theories, which have been successfully applied to hard composites (i.e., graphite—epoxy) have been shown to be inadequate in predicting some of the properties of the calendered fabric ply material from the properties of the cord and rubber. Finite element models which include an interply rubber layer to account for the interlaminar shear have been shown to give a better representation of cord/rubber laminate behavior in tension and bending. The application of finite element analysis to more refined models of complex structures like tires, however, requires the development of a more realistic material model which would account for the nonlinear stress—strain properties of cord/rubber composites.


Author(s):  
Aaron M. Swedberg ◽  
Shawn P. Reese ◽  
Steve A. Maas ◽  
Benjamin J. Ellis ◽  
Jeffrey A. Weiss

Ligament volumetric behavior controls fluid and thus nutrient movement as well as the mechanical response of the tissue to applied loads. The reported Poisson’s ratios for tendon and ligament subjected to tensile deformation loading along the fiber direction are large, ranging from 0.8 ± 0.3 in rat tail tendon fascicles [1] to 2.98 ± 2.59 in bovine flexor tendon [2]. These Poisson’s ratios are indicative of volume loss and thus fluid exudation [3,4]. We have developed micromechanical finite element models that can reproduce both the characteristic nonlinear stress-strain behavior and large, strain-dependent Poisson’s ratios seen in tendons and ligaments [5], but these models are computationally expensive and unfeasible for large scale, whole joint models. The objectives of this research were to develop an anisotropic, continuum based constitutive model for ligaments and tendons that can describe strain-dependent Poisson’s ratios much larger than the isotropic limit of 0.5. Further, we sought to demonstrate the ability of the model to describe experimental data, and to show that the model can be combined with biphasic theory to describe the rate- and time-dependent behavior of ligament and tendon.


1994 ◽  
Vol 33 (Part 1, No. 9B) ◽  
pp. 5341-5344 ◽  
Author(s):  
Toshio Tanimoto ◽  
Kohji Yamamoto ◽  
Tohru Morii

Sign in / Sign up

Export Citation Format

Share Document