High Strain Rate Fracture Behavior of Sn-Ag-Cu Solder Joints on Cu Substrates

Author(s):  
Z. Huang ◽  
P. Kumar ◽  
I. Dutta ◽  
J. H. L. Pang ◽  
R. Sidhu ◽  
...  

During service, micro-cracks form inside solder joints, making a microelectronic package prone to failure particularly during a drop. Hence, the understanding of the fracture behavior of solder joints under drop conditions, synonymously at high strain rates and in mixed mode, is critically important. This study reports: (i) the effects of processing conditions (reflow parameters and aging) on the microstructure and fracture behavior of Sn-3.8%Ag-0.7%Cu (SAC387) solder joints attached to Cu substrates, and (ii) the effects of the loading conditions (strain rate and loading angle) on the fracture toughness of these joints, especially at high strain rates. A methodology for calculating critical energy release rate, GC, was employed to quantify the fracture toughness of the joints. Two parameters, (i) effective thickness of the interfacial intermetallic compounds (IMC) layer, which is proportional to the product of the thickness and the roughness of the IMC layer, and (ii) yield strength of the solder, which depends on the solder microstructure and the loading rate, were identified as the dominant quantities affecting the fracture behavior of the solder joints. The fracture toughness of the solder joint decreased with an increase in the effective thickness of the IMC layer and the yield strength of the solder. A 2-dimensional fracture mechanism map with the effective thickness of the IMC layer and the yield strength of the solder as two axes and the fracture toughness as well as the fraction of different fracture paths as contour-lines was prepared. Trends in the fracture toughness of the solder joints and their correlation with the fracture modes are explained using the fracture mechanism map.

2019 ◽  
Vol 812 ◽  
pp. 38-44
Author(s):  
Shuai Chen ◽  
Wen Bin Li ◽  
Xiao Ming Wang ◽  
Wen Jin Yao

This work compares the pure copper (T2 copper)’s stress-strain relationship at different strain rates in the uni-axial tension test and Split Hopkinson Pressure Bar (SHPB) test. Small samples were utilized in the high strain rate SHPB test in which the accuracy was modified by numerical simulation. The experimental results showed that the T2 copper’s yield strength at high strain rates largely outweighed the quasi static yield strength. The flow stress in the stress-strain curves at different strain rates appeared to be divergent and increased with the increase in strain rates, showing great strain strengthening and strain rate hardening effects. Metallographic observation showed that the microstructure of T2 copper changed from equiaxed grains to twins and the interaction between the dislocation slip zone grain boundary and twins promoted the super plasticity distortion in T2 copper.


Author(s):  
Adewale Olasumboye ◽  
Gbadebo Owolabi ◽  
Olufemi Koya ◽  
Horace Whitworth ◽  
Nadir Yilmaz

Abstract This study investigates the dynamic response of AA2519 aluminum alloy in T6 temper condition during plastic deformation at high strain rates. The aim was to determine how the T6 temper condition affects the flow stress response, strength properties and microstructural morphologies of the alloy when impacted under compression at high strain rates. The specimens (with aspect ratio, L/D = 0.8) of the as-cast alloy used were received in the T8 temper condition and further heat-treated to the T6 temper condition based on the standard ASTM temper designation procedures. Split-Hopkinson pressure bar experiment was used to generate true stress-strain data for the alloy in the range of 1000–3500 /s strain rates while high-speed cameras were used to monitor the test compliance with strain-rate constancy measures. The microstructures of the as received and deformed specimens were assessed and compared for possible disparities in their initial microstructures and post-deformation changes, respectively, using optical microscopy. Results showed no clear evidence of strain-rate dependency in the dynamic yield strength behavior of T6-temper designated alloy while exhibiting a negative trend in its flow stress response. On the contrary, AA2519-T8 showed marginal but positive response in both yield strength and flow behavior for the range of strain rates tested. Post-deformation photomicrographs show clear disparities in the alloys’ initial microstructures in terms of the second-phase particle size differences, population density and, distribution; and in the morphological changes which occurred in the microstructures of the different materials during large plastic deformation. AA2519-T6 showed a higher susceptibility to adiabatic shear localization than AA2519-T8, with deformed and bifurcating transformed band occurring at 3000 /s followed by failure at 3500 /s.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2861
Author(s):  
Wenqing Li ◽  
Tieqiang Geng ◽  
Shaofan Ge ◽  
Zhengwang Zhu ◽  
Long Zhang ◽  
...  

The strain rate effect on the mechanical behavior of amorphous alloys has aroused general interest. Most studies in this area have focused on quasi-static and high strain-rate compressive deformations. However, experimental results have been few, or even non-existent, under a moderate strain-rate loading. This article extends the traditional split Hopkinson pressure bar (SHPB) technique to characterize compressive deformation of an amorphous alloy at medium strain rates. The compressive behavior of Zr65.25Cu21.75Al8Ni4Nb1 amorphous alloy shows a negative strain rate effect on the yield strength with a quasi-static, moderate to high strain-rate range, and the fracture angle increases from 44° at 10−5 s−1 to 60° at 4000 s−1 as strain rate increases. Herein, we introduce a modified cooperative shear model to describe the compressive behavior of the current amorphous alloy under a broad strain rate range. The model predicts that the normalized yield strength will linearly descend with logarithmic strain rate when the strain rate is less than a critical strain rate, however, which rapidly decreases linearly with the square of the strain rate at high strain rates. The predicted data of the model are highly consistent with the current experimental results. These findings provide support for future engineering applications of amorphous alloys.


2009 ◽  
Vol 77 (1) ◽  
Author(s):  
Fei Qin ◽  
Tong An ◽  
Na Chen

As traditional lead-based solders are banned and replaced by lead-free solders, the drop impact reliability is becoming increasingly crucial because there is little understanding of mechanical behaviors of these lead-free solders at high strain rates. In this paper, mechanical properties of one lead-based solder, Sn37Pb, and two lead-free solders, Sn3.5Ag and Sn3.0Ag0.5Cu, were investigated at strain rates that ranged from 600 s−1 to 2200 s−1 by the split Hopkinson pressure and tensile bar technique. At high strain rates, tensile strengths of lead-free solders are about 1.5 times greater than that of the Sn37Pb solder, and also their ductility are significantly greater than that of the Sn37Pb. Based on the experimental data, strain rate dependent Johnson–Cook models for the three solders were derived and employed to predict behaviors of solder joints in a board level electronic package subjected to standard drop impact load. Results indicate that for the drop impact analysis of lead-free solder joints, the strain rate effect must be considered and rate-dependent material models of lead-free solders are indispensable.


2009 ◽  
Vol 486 (1-2) ◽  
pp. 242-245 ◽  
Author(s):  
Taehoon You ◽  
Yunsung Kim ◽  
Woogwang Jung ◽  
Jeongtak Moon ◽  
Heeman Choe

1967 ◽  
Vol 89 (1) ◽  
pp. 86-92 ◽  
Author(s):  
H. T. Corten ◽  
A. K. Shoemaker

The influence of temperature and strain rate upon the fracture toughness of structural steel is the question considered in this paper. The hypothesis is proposed that fracture toughness, KIc, for initial crack extension is a single-valued function of the rate parameter T ln A/ε˙. Measurements made by Krafft and Sullivan of fracture toughness, KIc, for three steels covering a range of low temperatures and high strain rates are presented as a function of this rate parameter. Two of the materials support the contention that a single-valued relation exists between KIc and the parameter, while scatter in the data for the third steel does not allow a conclusion. The complexity of design against fracture in structural steels is reviewed. For conservative design it must be assumed that a crack is present in the structure. Design against fracture must insure that the minimum fracture toughness at the service temperature, strain rate and stress is sufficient to prevent this crack from extending rapidly through the base metal. A means of using low temperature laboratory fracture toughness tests for estimating a minimum fracture toughness corresponding to the service conditions is discussed.


Author(s):  
P. Kumar ◽  
Z. Huang ◽  
I. Dutta ◽  
R. Mahajan ◽  
M. Renavikar ◽  
...  

Electronic packages in mobile devices are often subjected to drops, leading to impact loading. Since solder joints, which serve as mechanical and electrical interconnects in a package, are particularly prone to failure during a drop, the fracture behavior of solders at high strain rates is a critical design parameter for building robust packages. Here we report on a methodology for measuring mixed-mode fracture toughness of Sn3.5Ag0.7Ag (SAC387) solder joints under dynamic loading conditions (at strain rates up to 100s−1), and use this method to investigate the role of solder microstructure and interfacial intermetallic compound (IMC) layer thickness on the joint fracture toughness at different mode-mixities and strain rates. Modified compact mixed mode (CMM) samples with adhesive solder joints between Cu plates and a thin film interfacial starter crack were used for the measurements. The interfacial IMC layer thickness was adjusted by controlling the dwell time during reflow, while the solder microstructure was controlled via the post-reflow cooling rate and subsequent thermal aging. The critical strain energy release rate (Gc) was measured as a function of these microstructural and loading variables, and these data were correlated with the associated crack path, details of which were elicited through fractography as well as crack-profile observations. The crack profile studies were based on samples with double interfacial starter cracks, one of which propagated only partially. Associated with the alteration of the joint microstructure, transitions in the fracture behavior were noted. In all cases, the cracks remained confined to the interfacial region, although the details of the crack propagation path and its interaction with interfacial IMCs, the adjacent solder and the pad surface finish varied significantly. Fracture toughness decreased with an increase in the strain rate and decreased with increasing mode-mixity. A thicker/coarser interfacial IMC layer (due to high dwell times) decreased toughness, while coarser solder microstructures (due to slow cooling during reflow or post-reflow aging) increased toughness. Correlations between joint microstructure and the observed deformation and fracture mechanisms will be highlighted, and a qualitative model based explanation for the inter-play between solder and IMC, and the associated interfaces will be presented.


2019 ◽  
Vol 8 (4) ◽  
pp. 3475-3486 ◽  
Author(s):  
Abdul Malik ◽  
Wang Yangwei ◽  
Cheng Huanwu ◽  
Muhammad Abubaker Khan ◽  
Faisal Nazeer ◽  
...  

2011 ◽  
Vol 284-286 ◽  
pp. 1579-1583
Author(s):  
Ping Li Mao ◽  
Zheng Liu ◽  
Chang Yi Wang ◽  
Feng Wang

The dynamic deformation behavior of an as-extruded Mg-Gd-Y magnesium alloy was studied by using Split Hopkinson Pressure Bar (SHPB) apparatus under high strain rates of 102 s-1 to 103s-1 in the present work, in the mean while the microstructure evolution after deformation were inspected by OM and SEM. The results demonstrated that the material is not sensitive to the strain rate and with increasing the strain rate the yield stress of as-extruded Mg-Gd-Y magnesium alloy has a tendency of increasing. The microstructure observation results shown that several deformation localization areas with the width of 10mm formed in the strain rates of 465s-1 and 2140s-1 along the compression axis respectively, and the grain boundaries within the deformation localization area are parallel with each other and are perpendicular to the compression axis. While increasing the strain rate to 3767s-1 the deformation seems become uniform and all the grains are compressed flat in somewhat. The deformation mechanism of as-extruded Mg-Gd-Y magnesium alloy under high strain rate at room temperature was also discussed.


Sign in / Sign up

Export Citation Format

Share Document