Comparative Study on Power Module Architectures for Modularity and Scalability

Author(s):  
Mei-Chien Lu

Abstract Silicon carbide wide bandgap power electronics have gained application spaces in hybrid electric vehicle and electrical vehicles. The Department of Energy has set target performance goals for 2025 to promote electric vehicles and hybrid electric vehicles as a means of carbon emission reduction and long term sustainability. Silicon carbide technology is well suited to reach these goals. Challenges include higher expectations on power density, performance, efficiency, thermal management, compactness, cost, and reliability. This study will benchmark state of the art silicon and silicon carbide technologies. Power modules of commercial traction inverters are analyzed for their within-package interconnect scheme, module architecture, and cooling methods. A few power module package architectures from both industry adopted standards and proposed patented technologies are compared for modularity and scalability for integration into inverters. The within package interconnect schemes are crucial elements to support power module design. Current trends of power module architectures and their integration into inverter are discussed. The development of an eco-system to support the transition from silicon-based to silicon carbide-based power electronics is additionally discussed as an ongoing challenge.

2020 ◽  
Vol 142 (4) ◽  
Author(s):  
Mei-Chien Lu

Abstract Silicon carbide (SiC) wide bandgap power electronics are being applied in hybrid electric vehicle (HEV) and electrical vehicles (EV). The Department of Energy (DOE) has set target performance goals for 2025 to promote EV and HEV as a means of carbon emission reduction and long-term sustainability. Challenges include higher expectations on power density, performance, efficiency, thermal management, compactness, cost, and reliability. This study will benchmark state of the art silicon and SiC technologies. Power modules used in commercial traction inverters are analyzed for their within-package first-level interconnect methods, module architecture, and integration with cooling structure. A few power module package architectures from both industry-adopted standards and proposed patented technologies are compared in modularity and scalability for integration into inverters. The current trends of power module architectures and their integration into inverter are also discussed. The development of an eco-system to support the wide bandgap semiconductors-based power electronics is highlighted as an ongoing challenge.


2012 ◽  
Vol 2012 (1) ◽  
pp. 001105-001115 ◽  
Author(s):  
Z. Cole ◽  
B. Passmore ◽  
B. Whitaker ◽  
A. Barkley ◽  
T. McNutt ◽  
...  

The packaging design and development of an on-board bi-directional charger for the battery system of the next generation Toyota Prius plug-in hybrid electric vehicle (PHEV) will be presented in this paper. The charger implements a multichip power module (MCPM) packaging strategy. The Silicon Carbide (SiC) MCPM charger is capable of operating to temperatures in excess of 200°C and at switching frequencies in excess of 500 kHz, significantly reducing the overall size and weight of the system in comparison with Toyota's present silicon-based Prius charger. The present actively cooled Si charger is capable of delivering a peak power of 1kW at less than 90 percent efficiency, is limited to less than 50 kHz switching, and measures greater than 6.3 liters with a mass of 6.6 kg, resulting in a power density of 150 W/kg. The passively cooled SiC MCPM charger presented herein was designed to deliver a peak power of 5 kW at greater than 96% efficiency, while measuring less than 0.9 liters with a mass of 1 kg, resulting in a power density greater than 5 kW/kg. Thus, the novel SiC MCPM charger represents an increase in power density of more than 30×, a very significant power density achievement in size and weight for sensitive mobile applications such as PHEVs. This paper will discuss the overall mechanical design of the SiC MCPM charger, the finite-element modeling and analysis of thermal and stress considerations, characterization and parasitic analysis of the MCPM, and the development of high temperature solutions for SiC devices.


2013 ◽  
Vol 740-742 ◽  
pp. 869-872 ◽  
Author(s):  
Peter Friedrichs ◽  
Reinhold Bayerer

Silicon carbide power devices are intended and to enter new application regimes in power electronics, in fact, they are enabling components mainly if higher switching frequencies in power electronics are considered. This trend can be clearly observed since power density can be increased and efforts towards passive components and other mechanical contributions to the system can be reduced. However, this trend imposes new challenges towards the surrounding of the chips in form of the package itself and the whole system around. Stray components like inductances and impedance elements become crucial elements in the whole circuit what results in the fact that a simple exchange of silicon chips by silicon carbide in a given package can be ruled out. In addition different considerations regarding the thermal design especially in power modules arise when SiC chips are considered, triggered by the fact that the cost balance between assembly and chip is shifted compared to silicon based solutions. Thus, different optimization criteria can be used, leading to new design approaches for power modules. The following paper will give a first inside how those boundary conditions can be implemented in innovative solutions using SiC components.


2014 ◽  
Vol 778-780 ◽  
pp. 1126-1129 ◽  
Author(s):  
Ayden Maralani ◽  
Wei Cheng Lien ◽  
Nuo Zhang ◽  
A.P. Pisano

Low power Silicon Carbide (SiC) devices and Integrated Circuits (ICs) in conjunction with SiC or Aluminum Nitride (AlN) sensing elements will enable sensing functions in high temperature environments up to 600 °C where no silicon based devices or circuits have been able to survive in that temperature range. In power electronics applications, existence of low power SiC devices and IC technologies will significantly aid the development of high power density power modules in which total weights and cooling systems sizes are reduced. This paper will be evaluating the performances of the fabricated low power SiC device candidates (JFET and BJT) for SiC-based analog ICs design for high temperature and power electronics applications.


Author(s):  
Dario Solis ◽  
Chris Schwarz

Abstract In recent years technology development for the design of electric and hybrid-electric vehicle systems has reached a peak, due to ever increasing restrictions on fuel economy and reduced vehicle emissions. An international race among car manufacturers to bring production hybrid-electric vehicles to market has generated a great deal of interest in the scientific community. The design of these systems requires development of new simulation and optimization tools. In this paper, a description of a real-time numerical environment for Virtual Proving Grounds studies for hybrid-electric vehicles is presented. Within this environment, vehicle models are developed using a recursive multibody dynamics formulation that results in a set of Differential-Algebraic Equations (DAE), and vehicle subsystem models are created using Ordinary Differential Equations (ODE). Based on engineering knowledge of vehicle systems, two time scales are identified. The first time scale, referred to as slow time scale, contains generalized coordinates describing the mechanical vehicle system that includs the chassis, steering rack, and suspension assemblies. The second time scale, referred to as fast time scale, contains the hybrid-electric powertrain components and vehicle tires. Multirate techniques to integrate the combined set of DAE and ODE in two time scales are used to obtain computational gains that will allow solution of the system’s governing equations for state derivatives, and efficient numerical integration in real time.


Author(s):  
Imran Rahman ◽  
Pandian Vasant ◽  
Balbir Singh Mahinder Singh ◽  
M. Abdullah-Al-Wadud

Electrification of Transportation has undergone major modifications since the last decade. Success of combining smart grid technology and renewable energy exclusively depends upon the large-scale participation of Plug-in Hybrid Electric Vehicles (PHEVs) towards reach the desired pollution-free transportation industry. One of the key Performance pointers of hybrid electric vehicle is the State-of-Charge (SoC) which needs to be enhanced for the advancement of charging station using computational intelligence methods. In this Chapter, authors applied Hybrid Particle swarm and gravitational search Optimization (PSOGSA) technique for intelligently allocating energy to the PHEVs considering constraints such as energy price, remaining battery capacity, and remaining charging time. Computational experiment results attained for maximizing the highly non-linear fitness function estimates the performance measure of both the techniques in terms of best fitness value and computation time.


2010 ◽  
Vol 2010 (HITEC) ◽  
pp. 000289-000296 ◽  
Author(s):  
James D. Scofield ◽  
J. Neil Merrett ◽  
James Richmond ◽  
Anant Agarwal ◽  
Scott Leslie

A custom multi-chip power module packaging was designed to exploit the electrical and thermal performance potential of silicon carbide MOSFETs and JBS diodes. The dual thermo-mechanical package design was based on an aggressive 200°C ambient environmental requirement and 1200 V blocking and 100 A conduction ratings. A novel baseplate-free module design minimizes thermal impedance and the associated device junction temperature rise. In addition, the design incorporates a free-floating substrate configuration to minimize thermal expansion coefficient induced stresses between the substrate and case. Details of the module design and materials selection process will be discussed in addition to highlighting deficiencies in current packaging materials technologies when attempting to achieve high thermal cycle life reliability over an extended temperature range.


2020 ◽  
pp. 195-228
Author(s):  
Imran Rahman ◽  
Pandian Vasant ◽  
Balbir Singh Mahinder Singh ◽  
M. Abdullah-Al-Wadud

Electrification of Transportation has undergone major modifications since the last decade. Success of combining smart grid technology and renewable energy exclusively depends upon the large-scale participation of Plug-in Hybrid Electric Vehicles (PHEVs) towards reach the desired pollution-free transportation industry. One of the key Performance pointers of hybrid electric vehicle is the State-of-Charge (SoC) which needs to be enhanced for the advancement of charging station using computational intelligence methods. In this Chapter, authors applied Hybrid Particle swarm and gravitational search Optimization (PSOGSA) technique for intelligently allocating energy to the PHEVs considering constraints such as energy price, remaining battery capacity, and remaining charging time. Computational experiment results attained for maximizing the highly non-linear fitness function estimates the performance measure of both the techniques in terms of best fitness value and computation time.


Sign in / Sign up

Export Citation Format

Share Document