Evolution of Potting-PCB Interfacial Reliability After Long Term High Temperature Operation

2021 ◽  
Author(s):  
Pradeep Lall ◽  
Aathi Raja Ram Pandurangan ◽  
Ken Blecker

Abstract Fine Pitch Electronic Components are reinforced using epoxy potting compounds and underfills to improve reliability and survivability, in extreme environments. Potting of electronic components offers structural support, shock damping and protection for the components from environmental conditions like moisture. Potting is one of the cost-effective and viable way to improve the survivability of the electronic components. On dynamic shock loading, interfacial delamination occurs between the potting material and the PCB, which further propagates to solder interconnect failures. The interfacial properties change with long-term exposure to temperature during operating and storage conditions. Mechanics of interface delamination of the epoxy potted PCB samples with thermal aging is a primary focus on this paper. Determination of fracture parameters such as fracture toughness and strain energy release rate at steady state stress is important in selection of the potting material and the reliability study of the supplemental restraint systems. PCB/Epoxy specimens are prepared, and their fracture behavior is observed under quasi-static three-point and four-point bend loading. In three-point bending, the peak stress acts at the midpoint of the specimen. In four-point bend loading, the peak stress is along whole area of the specimen under load (load span). The curing temperature providing the best fracture resistance is selected and followed throughout the study. The samples are exposed to 100°C for 30days and 60 days. Under dynamic loading, damage at the interface is studied. The experimental results provide the peak critical load, from which the fracture toughness parameters are calculated. A comparison has been made on fracture toughness and crack initiation of the PCB/Epoxy systems, based on flexure method and thermal aging.

2017 ◽  
Vol 26 (9) ◽  
pp. 4442-4449 ◽  
Author(s):  
Weiwei Yu ◽  
Dunji Yu ◽  
Hongbo Gao ◽  
Fei Xue ◽  
Xu Chen

1991 ◽  
Vol 226 ◽  
Author(s):  
A.M. Conlon ◽  
C.P. Cameron ◽  
J.W. Lau

AbstractSilver-glass die attach adhesives provide a cost effective means of producing high reliability parts which can withstand the environmental testing required of electronic components. One step processing of these adhesives provides the additional advantages of increased throughput and processing flexibility compared to eutectically bonded assemblies.This paper describes the performance of a one step silver-glass die attach adhesive processed under various time and temperature conditions. The effect of peak firing temperature and dwell time on the ultimate tensile strength of the adhesive will be discussed. Tensile data from parts subjected to thermal shock, thermal cycle and high temperature aging will be presented as an indication of the material's long term reliability.


Author(s):  
Seiichi Kawaguchi ◽  
Takeharu Nagasaki ◽  
Koji Koyama

Cast duplex stainless steels of CF8M and CF8 are used in major components because of their superior characteristics, such as corrosion resistance, weldability, and so on. However, these stainless steels are known to have tendency of thermal aging embrittlement after long term service. Therefore, the mechanical properties have been investigated using tensile test specimens and fracture toughness specimens aged at 300 to 450°C for up to 40,000 hours. From the results, the effects of thermal aging on the mechanical properties of these cast duplex stainless steels were identified. The true stress-true strain curve prediction method (TSS model) and fracture toughness prediction method (H3T model) after long term service were established. These prediction methods are used for the evaluation on the plant life management of nuclear power plants in Japan.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7865
Author(s):  
Shuai Zhang ◽  
Bing Han ◽  
Huibing Xie ◽  
Mingzhe An ◽  
Shengxu Lyu

In order to shorten construction periods, concrete is often cured using steam and is loaded at an early age. This changes the performance and even the durability of the concrete compared to concrete that has been cured under normal conditions. Thus, the pattern and the mechanism of concrete performance change under different curing conditions, and loading ages are of great significance. The development of brittleness under different curing conditions and loading ages was studied. The evaluation methods that were used to determine concrete brittleness were expounded. Steam, standard, and natural curing conditions were carried out on single-side notched concrete beams as well as on a concrete prism and cubic blocks. The compressive strength and splitting tensile strength of the concrete blocks along with the fracture performance of the concrete beams were tested after 3, 7, 28, and 90 days. The steam curing condition significantly improved the strength of concrete before 28 days had passed, and the standard curing condition improved the strength of concrete after 28 days. Based on the experimental fracture parameters, a two-parameter fracture model was applied to study the development of fracture toughness KICS, critical crack tip opening displacement CTODc, and critical strain energy release rate GICS with hydration age under different curing conditions. With respect to long-term performance, the standard curing condition was better at resisting concrete crack propagations than the steam curing condition was. The characteristic length lch and the material length Q under the three curing conditions and the long-term development of brittleness in the concrete indicated that steam curing increased the concrete brittleness. Considering the effects of the curing condition and the loading age, a time-dependent concrete fracture toughness model was established, and the predicted value of the model was verified against the measured value. The results indicated that the model was able to accurately predict the fracture toughness with an error rate of less than 16%.


2015 ◽  
Vol 20 (4) ◽  
pp. 242-251 ◽  
Author(s):  
Éva Kállay

Abstract. The last several decades have witnessed a substantial increase in the number of individuals suffering from both diagnosable and subsyndromal mental health problems. Consequently, the development of cost-effective treatment methods, accessible to large populations suffering from different forms of mental health problems, became imperative. A very promising intervention is the method of expressive writing (EW), which may be used in both clinically diagnosable cases and subthreshold symptomatology. This method, in which people express their feelings and thoughts related to stressful situations in writing, has been found to improve participants’ long-term psychological, physiological, behavioral, and social functioning. Based on a thorough analysis and synthesis of the published literature (also including most recent meta-analyses), the present paper presents the expressive writing method, its short- and long-term, intra-and interpersonal effects, different situations and conditions in which it has been proven to be effective, the most important mechanisms implied in the process of recovery, advantages, disadvantages, and possible pitfalls of the method, as well as variants of the original technique and future research directions.


1997 ◽  
Vol 17 (03) ◽  
pp. 161-162
Author(s):  
Thomas Hyers

SummaryProblems with unfractionated heparin as an antithrombotic have led to the development of new therapeutic agents. Of these, low molecular weight heparin shows great promise and has led to out-patient therapy of DVT/PE in selected patients. Oral anticoagulants remain the choice for long-term therapy. More cost-effective ways to give oral anticoagulants are needed.


Author(s):  
W.J. Parker ◽  
N.M. Shadbolt ◽  
D.I. Gray

Three levels of planning can be distinguished in grassland farming: strategic, tactical and operational. The purpose of strategic planning is to achieve a sustainable long-term fit of the farm business with its physical, social and financial environment. In pastoral farming, this essentially means developing plans that maximise and best match pasture growth with animal demand, while generating sufficient income to maintain or enhance farm resources and improvements, and attain personal and financial goals. Strategic plans relate to the whole farm business and are focused on the means to achieve future needs. They should be routinely (at least annually) reviewed and monitored for effectiveness through key performance indicators (e.g., Economic Farm Surplus) that enable progress toward goals to be measured in a timely and cost-effective manner. Failure to link strategy with control is likely to result in unfulfilled plans. Keywords: management, performance


Alloy Digest ◽  
2009 ◽  
Vol 58 (11) ◽  

Abstract Ancorsteel 4300 alloy ferrous powder simulates wrought steel compositions and is a cost-effective alternative to alloys requiring secondary processing. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as fracture toughness. It also includes information on heat treating and powder metal forms. Filing Code: SA-611. Producer or source: Hoeganaes Corporation.


Alloy Digest ◽  
2018 ◽  
Vol 67 (9) ◽  

Abstract Ferrium M54 was designed to create a cost-effective, ultra high-strength, high-fracture toughness material with a high resistance to stress-corrosion cracking for use in structural applications. This datasheet provides information on composition, hardness, and tensile properties as well asfatigue. Filing Code: SA-822. Producer or source: QuesTek Innovations, LLC.


Sign in / Sign up

Export Citation Format

Share Document