Life-Assessment for Thin Flexible Batteries Under U-Flex-to-Install and Dynamic Folding

2021 ◽  
Author(s):  
Pradeep Lall ◽  
Ved Soni ◽  
Scott Miller

Abstract The growing need for wearable devices, fitness accessories and biomedical equipment has led to the upsurge in research and development of thin flexible battery research and development. The current state of art wearable electronics products being developed in several fields require installation of power sources in different configurations and at times require the battery to undergo mechanical folding during product operation. This requires the product batteries to robustly withstand the imposed mechanical stresses during use along with the other desirable characteristics attributed to the power source such as high C-rate capability, high capacity and low capacity degradation rate. Works that explore the effects of static and dynamic folding on li-ion power sources is limited and oftentimes doesn’t adhere to definite test protocols resulting in non-standardized experimental data that can’t be applied to real-life product scenarios. Specifically, the effect of fold diameter on the battery state of health degradation when subjected to both static and dynamic folding is not yet completely explored. Present study aims to address this gap in the literature by investigating the effect of varying the fold diameter is both static (U-flex-to-install) and dynamic (dynamic U-fold) tests. Four different values of fold diameters have been chosen for experimentation and to study its effect during the aforementioned tests. Multiple samples have been tested for a given test condition so as to generate high fidelity data. Ultimately, a regression model developed previously has been augmented with the results generated in the current study.

Author(s):  
Pradeep Lall ◽  
Ved Soni ◽  
Scott Miller

Abstract The growing need for wearable devices, fitness accessories and biomedical equipment has led to the upsurge in research and development of thin flexible battery research and development. Wearable equipment and other asset monitoring applications require versatile installation of power sources on non-planar surfaces. For power sources in wearable electronics, perseverance towards repetitive mechanical stresses induced by human body motion is necessary along with the usual desirable characteristics such as high capacity, high C-rate capability and good life cycle stability. Prior studies which document the reliability of power sources subject to static and dynamic folding are scarce and at times fail to follow definitive test protocols which limit their application to real-life battery use scenarios. Particularly, the use of manual mechanical stressing of the power sources instead of a mechanical test setup is a key shortcoming in existing literature. Data is lacking on battery life cycling and in-situ mechanical stressing of the power sources including their impact of performance and reliability. Present study aims to overcome these deficiencies by testing a commercial Li-ion power source under static as well as dynamic folding. Furthermore, the fold-orientation and its fold-speed are varied to evaluate the effect of different mechanical stress topologies on the power source. Finally, a regression model was developed to capture the effect of these use parameters on battery capacity degradation.


Author(s):  
Pradeep Lall ◽  
Ved Soni ◽  
Scott Miller

Abstract The demand for wearable consumer electronics, fitness accessories and biomedical equipment has led to the growth research and development of thin flexible batteries. Wearable equipment and other asset monitoring applications require conformal installation of power sources on non-planar surfaces. For power sources in wearable electronics, durability to sustain repetitive mechanical stresses induced by human body motion is paramount along with the usual desirable power source characteristics. Previous research documenting the reliability of statically and dynamically folded power sources is scarce and does not follow standardized test protocols. Particularly, the use of manual stressing for mechanical folding of the power sources instead of a mechanical test setup is a key shortcoming in existing literature. Data is lacking on battery life cycling and in-situ mechanical stress-testing of the power sources including their impact of performance and reliability. Present study aims to overcome these deficiencies by testing a commercial Li-ion power source under static as well as dynamic folding. Furthermore, the fold-orientation and its fold-speed are varied to evaluate the effect of different mechanical stress topologies on the power source. Finally, a regression model was developed to capture the effect of these use parameters on battery capacity degradation.


Author(s):  
Pradeep Lall ◽  
Ved Soni ◽  
Amrit Abrol ◽  
Ben Leever ◽  
Scott Miller

Abstract Recent surge in demand for wearable technology products such as activity tracking smartwatches, and for medical devices has necessitated development of flexible secondary lithium ion batteries which also possess high capacity, robustness and thin form factors. Oftentimes, these power sources are only charged up to a partial state of charge (SoC) before use (shallow charge). Their usage continues until the SoC reaches almost zero, after which they are recharged again. Nowadays, the ‘fast-charge ‘feature used to charge the battery at higher C-rates, is a necessity in consumer electronics rather than an amenity. Also, in everyday use, these batteries are exposed to higher-than-ambient temperatures due to perpetual human body contact and also to the high temperatures resulting from poor thermal management in compact devices. This study investigates the compounded influence of partial charge, high temperatures and high C-rates on the capacity degradation of a flexible Li-ion power source subjected to accelerated life testing. The battery current and terminal voltage were logged for multiple charge-discharge cycles and were used to compute the battery capacity and energy efficiency. Finally, a regression model based on several parameters was developed to estimate the battery capacity as a function of the cycle number.


2014 ◽  
Vol 1070-1072 ◽  
pp. 543-548
Author(s):  
Xin Nuan Liu ◽  
Qun Jie Xu ◽  
Xiao Lei Yuan ◽  
Xue Jin ◽  
Luo Zeng Zhou

With the development of the portable electronics industry, the need for more efficient power sources has been enlarged. Lithium-ion batteries are able to deliver high energy densities, high capacity and long cycle life at reasonable costs among competing energy storage technologies. The major goal of this paper is to introduce the promising Li-rich cathode material xLi2MnO3·(1-x) LiMO2(M=Ni, Co, Mn...), which owns enhanced energy and power density, high energy efficiency, superior rate capability and excellent cycling stability due to different modification methods.


2020 ◽  
Vol 41 (3) ◽  
pp. 124-132
Author(s):  
Marc-André Bédard ◽  
Yann Le Corff

Abstract. This replication and extension of DeYoung, Quilty, Peterson, and Gray’s (2014) study aimed to assess the unique variance of each of the 10 aspects of the Big Five personality traits ( DeYoung, Quilty, & Peterson, 2007 ) associated with intelligence and its dimensions. Personality aspects and intelligence were assessed in a sample of French-Canadian adults from real-life assessment settings ( n = 213). Results showed that the Intellect aspect was independently associated with g, verbal, and nonverbal intelligence while its counterpart Openness was independently related to verbal intelligence only, thus replicating the results of the original study. Independent associations were also found between Withdrawal, Industriousness and Assertiveness aspects and verbal intelligence, as well as between Withdrawal and Politeness aspects and nonverbal intelligence. Possible explanations for these associations are discussed.


2021 ◽  
pp. 1-6
Author(s):  
Cihat Uzunköprü ◽  
Yesim Beckmann ◽  
Sabiha Türe

<b><i>Introduction:</i></b> The primary aim of the present study was to evaluate the long-term efficacy of fingolimod in patients with multiple sclerosis (MS); secondary aims were to describe the safety of fingolimod with the evaluation of treatment satisfaction and impact on the quality of life in real life. <b><i>Methods:</i></b> We collected clinical, demographical, neuroradiological, and treatment data, including pre- and posttreatment status health-related quality of life from 286 MS patients consecutively treated with fingolimod. Clinical assessment was based on the Expanded Disability Status Scale (EDSS), and quality of life assessment was performed with MS-related quality of life inventory (MSQOLI). The data were recorded at baseline and every 6 months for 2 years. <b><i>Results:</i></b> One hundred and fourteen males and 172 females were enrolled. The annualized relapse rate and EDSS showed a statistically significant reduction during the observation period (<i>p</i> &#x3c; 0.001). The patients also demonstrated substantial improvements in magnetic resonance imaging (MRI) outcomes (<i>p</i> &#x3c; 0.001). Health-related quality of life scores improved significantly between baseline and 24-month visit (<i>p</i> &#x3c; 0.001). No serious adverse events occurred. <b><i>Conclusion:</i></b> In our cohort, fingolimod treatment was associated with reduced relapse, MRI activity, and improved EDSS and MSQOLI scores. Additionally, fingolimod has been able to maintain its effectiveness over a considerable long period of treatment.


2011 ◽  
Vol 04 (03) ◽  
pp. 299-303 ◽  
Author(s):  
ZHUO TAN ◽  
PING GAO ◽  
FUQUAN CHENG ◽  
HONGJUN LUO ◽  
JITAO CHEN ◽  
...  

A multicomponent olivine cathode material, LiMn0.4Fe0.6PO4 , was synthesized via a novel coprecipitation method of the mixed transition metal oxalate. X-ray diffraction patterns indicate that carbon-coated LiMn0.4Fe0.6PO4 has been prepared successfully and that LiMn0.4Fe0.6PO4/C is crystallized in an orthorhombic structure without noticeable impurity. Homogeneous distribution of Mn and Fe in LiMn0.4Fe0.6PO4/C can be observed from the scanning electron microscopy (SEM) and the corresponding energy dispersive X-ray spectrometry (EDS) analysis. Hence, the electrochemical activity of each transition metal in the olivine synthesized via coprecipitation method was enhanced remarkably, as indicated by the galvanostatic charge/discharge measurement. The synthesized LiMn0.4Fe0.6PO4/C exhibits a high capacity of 158.6 ± 3 mAhg-1 at 0.1 C, delivering an excellent rate capability of 122.6 ± 3 mAhg-1 at 10 C and 114.9 ± 3 mAhg-1 at 20 C.


Author(s):  
Ke Qu ◽  
Yuqi Bai ◽  
Miao Deng

Abstract The ever-increasing need for small and lightweight power sources for use in portable or wearable electronic devices has spurred the development of supercapacitors as a promising energy storage and conversion system. In this work, a simple, facile and easy-to-practice method has been developed to employ carbon paper (CP) as the support to coat molybdenum disulfide (MoS2) and graphene oxide (GO), followed by electrodeposition of polyaniline (PANI) to render CP/MoS2-GO-PANI. The preparation parameters, such as amounts of MoS2, GO and number of aniline electropolymerization cycles, have been optimized to render CP/MoS2-GO-PANI the best capacitive performance. The as-prepared optimal CP/MoS2-GO-PANI is characterized by X-ray powder diffraction, scanning electron microscopy, energy-dispersive spectroscopy, and X-ray photoelectron spectroscopy. The supercapacitive properties of CP/MoS2-GO-PANI as an electrode have been evaluated electrochemically via cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy testing. CP/MoS2-GO-PANI delivers a specific capacitance of 255.1 F/g at 1.0 A/g and exhibits excellent rate capability under larger current densities. Moreover, a symmetrical supercapacitor is assembled and three are connected in series to power a light-emitting diode for ~15 minutes, demonstrating the promising application potential of CP/MoS2-GO-PANI-based supercapacitor.


2021 ◽  
Author(s):  
yajun JI ◽  
Fei Chen ◽  
Shufen Tan ◽  
Fuyong Ren

Abstract Transition metal oxides are generally designed as hybrid nanostructures with high performance for supercapacitors by enjoying the advantages of various electroactive materials. In this paper, a convenient and efficient route had been proposed to prepare hierarchical coral-like MnCo2O4.5@Co-Ni LDH composites on Ni foam, in which MnCo2O4.5 nanowires were enlaced with ultrathin Co-Ni layered double hydroxides nanosheets to achieve high capacity electrodes for supercapacitors. Due to the synergistic effect of shell Co-Ni LDH and core MnCo2O4.5, the outstanding electrochemical performance in three-electrode configuration was triggered (high area capacitance of 5.08 F/cm2 at 3 mA/cm2 and excellent rate capability of maintaining 61.69 % at 20 mA/cm2), which is superior to those of MnCo2O4.5, Co-Ni LDH and other metal oxides based composites reported. Meanwhile, the as-prepared hierarchical MnCo2O4.5@Co-Ni LDH electrode delivered improved electrical conductivity than that of pristine MnCo2O4.5. Furthermore, the as-constructed asymmetric supercapacitor using MnCo2O4.5@Co-Ni LDH as positive and activated carbon as negative electrode presented a rather high energy density of 220 μWh/cm2 at 2400 μW/cm2 and extraordinary cycling durability with the 100.0 % capacitance retention over 8000 cycles at 20 mA/cm2, demonstrating the best electrochemical performance compared to other asymmetric supercapacitors using metal oxides based composites as positive electrode material. It can be expected that the obtained MnCo2O4.5@Co-Ni LDH could be used as the high performance and cost-effective electrode in supercapacitors.


Sign in / Sign up

Export Citation Format

Share Document