Utilization of Vertiline Wire Conveyed Smart Tools in Gas Storage Field Pipeline Applications

Author(s):  
Brian S. Buck ◽  
James D. Philo

Consumers Energy, which is the largest natural gas utility in the state of Michigan and fifth largest in the United States, operates thirteen natural gas storage fields in the state as part of its Gas Transmission and Storage system. These storage fields consist of a network of storage wells connected via a series of short pipeline laterals and headers. Typical field configuration consists of one or two main headers with several laterals branching off to the gas storage wells. Due to the shorter line lengths (2.5 miles or less) and other operational conflicts, it is difficult to utilize conventional online smart pigging methods to assess the integrity of these laterals and headers. Based on the type (welded steel), average age, and operating conditions of the pipelines in these storage fields, an internal inspection method was desired. Consumers Energy has teamed with Baker Atlas to utilize their Vertiline wire conveyed MFL (magnetic flux leakage) smart tools to assess the integrity of these gas storage field headers and laterals. The Vertiline technology was originally conceived for down hole well casing integrity analysis, however, the application was found to be ideal for short section, limited access, and otherwise unpiggable pipelines. The Baker Vertiline technology can currently be used on pipeline sizes up to 24” in diameter, and larger diameter tools are under development. This paper will explore the process that Consumers Energy undertook to utilize wire conveyed MFL smart tools in its gas storage field pipelines. Field preparation for tool runs, running the tool and gathering data, and data presentation will all be reviewed. The advantages and disadvantages, techniques, capabilities, and technology of the wire conveyed MFL smart tools themselves will also be discussed, along with other potential applications such as use in analysis of pipeline river crossings, pipelines lacking pig launching facilities, and offshore production lines.

Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 549
Author(s):  
Eric Pareis ◽  
Eric Hittinger

With an increase in renewable energy generation in the United States, there is a growing need for more frequency regulation to ensure the stability of the electric grid. Fast ramping natural gas plants are often used for frequency regulation, but this creates emissions associated with the burning of fossil fuels. Energy storage systems (ESSs), such as batteries and flywheels, provide an alternative frequency regulation service. However, the efficiency losses of charging and discharging a storage system cause additional electrical generation requirements and associated emissions. There is not a good understanding of these indirect emissions from charging and discharging ESSs in the literature, with most sources stating that ESSs for frequency regulation have lower emissions, without quantification of these emissions. We created a model to estimate three types of emissions (CO2, NOX, and SO2) from ESSs providing frequency regulation, and compare them to emissions from a natural gas plant providing the same service. When the natural gas plant is credited for the generated electricity, storage systems have 33% to 68% lower CO2 emissions than the gas turbine, depending on the US eGRID subregion, but higher NOX and SO2 emissions. However, different plausible assumptions about the framing of the analysis can make ESSs a worse choice so the true difference depends on the nature of the substitution between storage and natural gas generation.


2014 ◽  
Vol 53 (11) ◽  
pp. 4522-4523 ◽  
Author(s):  
Pradeepta K. Sahoo ◽  
Mathew John ◽  
Bharat L. Newalkar ◽  
N. V. Choudhary ◽  
K. G. Ayappa

2014 ◽  
Vol 119 ◽  
pp. 190-203 ◽  
Author(s):  
P.K. Sahoo ◽  
B.P. Prajwal ◽  
Siva Kalyan Dasetty ◽  
M. John ◽  
B.L. Newalkar ◽  
...  

Author(s):  
David Lawrence ◽  
Gregory Cano ◽  
Steven Williams

This discussion paper is based on a preliminary design and is not to be construed or interpreted as being a suitable basis for adoption as a final design for natural gas storage facilities or marine vessels. The gas storage concepts were developed as a basis for project budgeting, further design studies such as HAZID/HAZOP/FEMA, and for review/comment by Classification Societies and Regulatory Authorities as a precedent to further design development. The contents, comments and opinions contained herein are proprietary to Floating Pipeline Company Incorporated and TransCanada. Paper published with permission.


Author(s):  
L. Vasiliev ◽  
L. Kanonchik ◽  
M. Kuzmich ◽  
V. Kulikouski

1990 ◽  
Vol 2 (4) ◽  
pp. 353-387 ◽  
Author(s):  
William R. Childs

The “Railroad Commission of Texas” conjures up visions of oil and gas and power politics and perhaps the question, What does “railroad” have to do with petroleum? The Railroad Commission (RCT) also brings to mind modern America between 1930 and the 1970s, when the Texas agency controlled from 35 to 45 percent of the oil and gas produced in the United States. These images come from cultural myths of the Lone Star State, from Americans' fascination with conspiracies, and, most telling, from the lack of historical analyses of the commission, its staff, and its regulatory strategies. The prevailing views of the commission are unfortunate ones, for they not only neglect the agency's regulation of railroads, natural-gas utilities, and buses and trucks but also skew the understanding of how the state commission came to regulate petroleum in the first place, how it devised policies for doing so, and how it legitimized itself and defended that legitimacy under the weight of the East Texas crisis between 1930 and 1935.


2014 ◽  
Vol 1008-1009 ◽  
pp. 346-355
Author(s):  
Qi Lin Feng ◽  
Hao Cai ◽  
Zhi Long Chen ◽  
Dong Jun Guo ◽  
Yin Ma

Natural gas storages in salt caverns are receiving an increasingly important role in energy storage system of many countries. This study focuses on analyzing the consequence of jet fire associated with natural gas storages in salt caverns. A widely used software, ALOHA, was adopted as simulation tool. The reliability of ALOHA was validated by comparing the simulated results with the field data observed in real accidents and the values calculated by a simple model presented in a previous study. The China's first natural gas storage in salt cavern, Jintan natural gas storage, was selected for case study. The case study reveals that the hazard distance of jet fire decreased with the increase of pipeline length, as well as the decrease of pipeline diameter and operating pressure.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3274
Author(s):  
Evgeny M. Strizhenov ◽  
Sergey S. Chugaev ◽  
Ilya E. Men’shchikov ◽  
Andrey V. Shkolin ◽  
Anatoly A. Zherdev

Adsorbed natural gas (ANG) technology is a promising alternative to traditional compressed (CNG) and liquefied (LNG) natural gas systems. Nevertheless, the energy efficiency and storage capacity of an ANG system strongly depends on the thermal management of its inner volume because of significant heat effects occurring during adsorption/desorption processes. In the present work, a prototype of a circulating charging system for an ANG storage tank filled with a monolithic nanoporous carbon adsorbent was studied experimentally under isobaric conditions (0.5–3.5 MPa) at a constant volumetric flow rate (8–18 m3/h) or flow mode (Reynolds number at the adsorber inlet from 100,000 to 220,000). The study of the thermal state of the monolithic adsorbent layer and internal heat exchange processes during the circulating charging of an adsorbed natural gas storage system was carried out. The correlation between the gas flow mode, the dynamic gas flow temperature, and the heat transfer coefficient between the gas and adsorbent was determined. A one-dimensional mathematical model of the circulating low-temperature charging process was developed, the results of which correspond to the experimental measurements.


2017 ◽  
Vol 16 (4) ◽  
pp. 153
Author(s):  
Wojciech Kwiatkowski

The Right of Clemency at the State Level in the United StatesSummary The article discusses the core issues related to state-level clemency in the United States of America. This power is deeply rooted in American history. At this level clemency often serves as an important mechanism of checks and balances on the state judiciary; it enables error-correction in a state criminal justice system, it may afford relief from undue harshness, and it helps to ensure that the state justice system is tempered. Although it is not required by the federal constitution, each state has a constitutional provision addressing clemency. This article points out that an important difference compared with solutions at the federal level is that the power to exercise clemency at the state level is vested in either the governor, an executive clemency board, or a combination thereof, so an important part of the study was to determine the advantages and disadvantages of each of these solutions. Another important aspect of the study was to identify the determinants affecting the regulation and application of state clemency. The article also discusses (I) some legal methods to limit the power to pardon and (II) regulations which determine the transparency of the whole procedure.


Sign in / Sign up

Export Citation Format

Share Document