SCC Detection and Mitigation Based on In-Line Inspection Tools

Author(s):  
Walter Kresic ◽  
Scott Ironside

The focus of the Enbridge Integrity Management System is to prevent leaks or ruptures caused by all duty-related pipe deterioration including SCC. As with all pipe defect types, ongoing monitoring programs are employed to determine whether SCC has occurred. Where it has, preventative maintenance programs are employed to mitigate the SCC. Where required, Enbridge employs high-resolution crack in-line inspection (ILI) as the most precise method for managing SCC. As a member of the Canadian Energy Pipeline Association (CEPA), Enbridge participated in the development of a basic framework for SCC management programs and has adopted this framework as the basis for the Enbridge program. Ultrasonic crack detection ILI, capable of detecting SCC, has been employed on over 3000 km of Enbridge pipe and several hundred investigative excavations have been conducted in relation to the ILI data. The results gathered from these investigations have been trended to define the effectiveness of crack detection ILI to detect, size, and discriminate SCC defects. This paper and presentation describes Enbridge’s experience utilizing ultrasonic crack detection ILI for SCC management. The Enbridge trends have shown that ILI can be reliably utilized to detect SCC but, additional innovation is required for defect sizing. While ILI sizing is limited, trends developed from field inspection data have provided the ability to categorize ILI signals into general classifications that ensure all relevant SCC features are highlighted. The categorization is accurate but added precision would reduce the number of investigative excavations, which currently, are also conducted on many sub-relevant features. Coincident with SCC activities driven by ILI data, trends were also developed for peripheral aspects such as field NDT technology, fitness-for-purpose equations, and SCC initiation and growth causes. Observations and trends related to these activities are also described herein.

Author(s):  
Cory Wargacki ◽  
Wade Forshner ◽  
Rogelio Guajardo ◽  
Thomas Hennig

Abstract Axial cracking inspections have become common place on a global level within pipeline operator’s integrity management programs. As technology continues to improve, operators are presented with more accurate assessments of the assets that are in current operation. However as more information is collected more threats are being identified and need to be assessed in a manner that is more applicable to their specific morphology. It is well known that vintage ERW manufacturing techniques can suffer from a wide range of potential threats such as lack of fusion or inclusions within the steel forming hook cracks during the rolling and welding process. Current In-line inspection technologies that are designed to detect, Identify and size cracklike flaws in pipelines are very proficient at doing so. However, due to the physical principals of the Ultrasonic pulse echo technology, deep features approaching, or above pulse echo saturation amplitudes pose challenges in determining accurate depth sizing. In 2015 a Canadian pipeline operator determined the need to inspect one of their 16” assets for axial crack-like indications. During the analysis of this inspection data set, a number of saturated crack-like indications were reported. Saturated cracklike signals present a challenge to operators as they have to be considered in a conservative manner as 4mm or deeper which in turn leads to difficulties in the prioritization of resources associated with the excavation program. The operator approached NDT Global in 2017, after the release of NDT Global’s Enhanced sizing depth algorithm to reevaluate the features that were present in the previous crack inspection data set. Working together with the operator, NDT Global applied the Enhanced sizing methodology to all features of significance in the pipeline segment and compared the results to lab measurements and in field NDE measurements. The outcome of the reanalysis using the most up to date software algorithms utilizing enhanced sizing showed great benefits by increasing the accuracy of the crack depth sizing as NDT Global was now able to report full through wall depth sizing, however there were still some limitations on the ability to accurately size crack-like features as the primary threat is believed to be a result of hook cracks. As a final step in this program NDT Global was provided sample spools that were cut out of the pipeline segment to perform a pull testing campaign utilizing the newest crack detection technology that was specifically targeted towards accurately sizing tilted and skewed crack like features. The authors will briefly discuss the pipeline system and inspection campaign and in detail will discuss the benefits of using technology that has been developed to help pipeline operators better understand the threats in their integrity management program.


Author(s):  
Mark Slaughter ◽  
Kevin Spencer ◽  
Jane Dawson ◽  
Petra Senf

Ultrasonic inline inspection (ILI) tools have been used in the oil and gas pipeline industry for the last 14 years to detect and measure cracks. The detection capabilities of these tools have been verified through many field investigations. ILI ultrasonic crack detection has good correlation with the crack layout on the pipe and estimating the maximum crack depth for the crack or colony. Recent analytical developments have improved the ability to locate individual cracks within a colony and to define the crack depth profile. As with the management of corroding pipelines, the ability to accurately discriminate active from non-active cracks and to determine the rate of crack growth is an essential input into a number of key integrity management decisions. For example, in order to identify the need for and timing of field investigations and/or repairs and to optimize re-inspection intervals crack growth rates are a key input. With increasing numbers of cracks and crack colonies being found in pipelines there is a real need for reliable crack growth information to use in prioritizing remediation activities and planning re-inspection intervals. So as more and more pipelines containing cracks are now being inspected for a second time (or even third time in some cases), the industry is starting to look for quantitative crack growth information from the comparison of repeat ultrasonic crack detection ILI runs. This paper describes the processes used to analyze repeat ultrasonic crack detection ILI data and crack growth information that can be obtained. Discussions on how technical improvements made to crack sizing accuracy and how field verification information can benefit integrity plans are also included.


Author(s):  
Garrett H. Wilkie ◽  
Tanis J. Elm ◽  
Don L. Engen

Enbridge Pipelines Inc. operates the world’s longest and most complex liquids pipeline network. As part of Enbridge’s Integrity Management Program In-Line Inspections have been and will continue to be conducted on more than 15,000 km of pipeline. This extensive program is comprised of a mature metal loss and geometry inspection component as well as a crack inspection program utilizing the most sophisticated In-Line Inspection (ILI) tools available. Enbridge conducted its first ultrasonic crack inspection with the British Gas Elastic Wave Vehicle (Now GE Power Systems – Oil & Gas – PII Pipeline Solutions) in September 1993 on a Canadian portion of it’s 864–mm (34”) diameter line. The Elastic Wave Vehicle was also used for crack detection on additional segments of this same 864–mm (34”) diameter line during the following years, 1994, 1995 and 1996. Enbridge then conducted its first crack inspection with the Pipetronix UltraScan CD tool (Now also GE Power Systems – Oil & Gas – PII Pipeline Solutions) in November 1997 on a segment of this 864–mm (34”) diameter line that was previously inspected with the Elastic Wave Vehicle. The UltraScan CD tool was then utilized again in 1999, 2000 and 2001 completing crack inspection of the Canadian portion of this 864–mm (34”) diameter line. Enbridge conducted its first magnetic crack inspection with the PII TranScan (TFI) Circumferential Magnetic inspection tool in December 1998 on a United States portion of another 864–mm (34”) diameter line. This same section of line was subsequently inspected with the PII UltraScan CD tool in July 2001. This paper discusses the comparison of results from overlapping crack inspection data analysis from these three PII crack detection tools. Specifically, the overlap of the UltraScan CD and Elastic Wave Vehicle along with the overlap of the UltraScan CD and TranScan (TFI) tool. The relative performance of each crack detection tool will be explored and conclusions drawn.


Author(s):  
Neil Bates ◽  
David Lee ◽  
Clifford Maier

This paper describes case studies involving crack detection in-line inspections and fitness for service assessments that were performed based on the inspection data. The assessments were used to evaluate the immediate integrity of the pipeline based on the reported features and the long-term integrity of the pipeline based on excavation data and probabilistic SCC and fatigue crack growth simulations. Two different case studies are analyzed, which illustrate how the data from an ultrasonic crack tool inspection was used to assess threats such as low frequency electrical resistance weld seam defects and stress corrosion cracking. Specific issues, such as probability of detection/identification and the length/depth accuracy of the tool, were evaluated to determine the suitability of the tool to accurately classify and size different types of defects. The long term assessment is based on the Monte Carlo method [1], where the material properties, pipeline details, crack growth parameters, and feature dimensions are randomly selected from certain specified probability distributions to determine the probability of failure versus time for the pipeline segment. The distributions of unreported crack-related features from the excavation program are used to distribute unreported features along the pipeline. Simulated crack growth by fatigue, SCC, or a combination of the two is performed until failure by either leak or rupture is predicted. The probability of failure calculation is performed through a number of crack growth simulations for each of the reported and unreported features and tallying their respective remaining lives. The results of the probabilistic analysis were used to determine the most effective and economical means of remediation by identifying areas or crack mechanisms that contribute most to the probability of failure.


ICPTT 2011 ◽  
2011 ◽  
Author(s):  
Ting Wang ◽  
Qing-shan Feng ◽  
Hong-long Zheng ◽  
Ling Sun ◽  
Qing Chang

Author(s):  
Karine Kutrowski ◽  
Rob Bos ◽  
Jean-Re´gis Piccardino ◽  
Marie Pajot

On January 4th 2007 TIGF published the following invitation for tenders: “Development and Provision of a Pipeline Integrity Management System”. The project was awarded to Bureau Veritas (BV), who proposed to meet the requirements of TIGF with the Threats and Mitigations module of the PiMSlider® suite extended with some customized components. The key features of the PiMSlider® suite are: • More than only IT: a real integrity philosophy, • A simple intuitive tool to store, display and update pipeline data, • Intelligent search utilities to locate specific information about the pipeline and its surrounding, • A scalable application, with a potentially unlimited number of users, • Supervision (during and after implementation) by experienced people from the oil and gas industry. This paper first introduces TIGF and the consortium BV – ATP. It explains in a few words the PIMS philosophy captured in the PiMSlider® suite and focuses on the added value of the pipeline Threats and Mitigations module. Using this module allows the integrity analyst to: • Prioritize pipeline segments for integrity surveillance purposes, • Determine most effective corrective actions, • Assess the benefits of corrective actions by means of what-if scenarios, • Produce a qualitative threats assessment for further use in the integrity management plan, • Optimize integrity aspects from a design, maintenance and operational point of view, • Investigate the influence of different design criteria for pipeline segments. To conclude, TIGF presents the benefits of the tool for their Integrity Management department and for planning inspection and for better knowledge of their gas transmission grid.


Author(s):  
Ayaho Miyamoto

This paper describes an acquisitive method of rule‐type knowledge from the field inspection data on highway bridges. The proposed method is enhanced by introducing an improvement to a traditional data mining technique, i.e. applying the rough set theory to the traditional decision table reduction method. The new rough set theory approach helps in cases of exceptional and contradictory data, which in the traditional decision table reduction method are simply removed from analyses. Instead of automatically removing all apparently contradictory data cases, the proposed method determines whether the data really is contradictory and therefore must be removed or not. The method has been tested with real data on bridge members including girders and filled joints in bridges owned and managed by a highway corporation in Japan. There are, however, numerous inconsistent data in field data. A new method is therefore proposed to solve the problem of data loss. The new method reveals some generally unrecognized decision rules in addition to generally accepted knowledge. Finally, a computer program is developed to perform calculation routines, and some field inspection data on highway bridges is used to show the applicability of the proposed method.


2021 ◽  
Author(s):  
Biramarta Isnadi ◽  
Luong Ann Lee ◽  
Sok Mooi Ng ◽  
Ave Suhendra Suhaili ◽  
Quailid Rezza M Nasir ◽  
...  

Abstract The objective of this paper is to demonstrate the best practices of Topside Structural Integrity Management for an aging fleet of more than 200 platforms with about 60% of which has exceeded the design life. PETRONAS as the operator, has established a Topside Structural Integrity Management (SIM) strategy to demonstrate fitness of the offshore topside structures through a hybrid philosophy of time-based inspection with risk-based maintenance, which is in compliance to API RP2SIM (2014) inspection requirements. This paper shares the data management, methodology, challenges and value creation of this strategy. The SIM process adopted in this work is in compliance with industry standards API RP2SIM, focusing on Data-Evaluation-Strategy-Program processes. The operator HSE Risk Matrix is adopted in risk ranking of the topside structures. The main elements considered in developing the risk ranking of the topside structures are the design and assessment compliance, inspection compliance and maintenance compliance. Effective methodology to register asset and inspection data capture was developed to expedite the readiness of Topside SIM for a large aging fleet. The Topside SIM is being codified in the operator web-based tool, Structural Integrity Compliance System (SICS). Identifying major hazards for topside structures were primarily achieved via data trending post implementation of Topside SIM. It was then concluded that metal loss as the major threat. Further study on effect of metal loss provides a strong basis to move from time-based maintenance towards risk-based maintenance. Risk ranking of the assets allow the operator to prioritize resources while managing the risk within ALARP level. Current technologies such as drone and mobile inspection tools are deployed to expedite inspection findings and reporting processes. The data from the mobile inspection tool is directly fed into the web based SICS to allow reclassification of asset risk and anomalies management.


Sign in / Sign up

Export Citation Format

Share Document