Applying Advanced Ultrasonic In-Line Inspection Technologies to Effectively Manage Hook Cracks

Author(s):  
Cory Wargacki ◽  
Wade Forshner ◽  
Rogelio Guajardo ◽  
Thomas Hennig

Abstract Axial cracking inspections have become common place on a global level within pipeline operator’s integrity management programs. As technology continues to improve, operators are presented with more accurate assessments of the assets that are in current operation. However as more information is collected more threats are being identified and need to be assessed in a manner that is more applicable to their specific morphology. It is well known that vintage ERW manufacturing techniques can suffer from a wide range of potential threats such as lack of fusion or inclusions within the steel forming hook cracks during the rolling and welding process. Current In-line inspection technologies that are designed to detect, Identify and size cracklike flaws in pipelines are very proficient at doing so. However, due to the physical principals of the Ultrasonic pulse echo technology, deep features approaching, or above pulse echo saturation amplitudes pose challenges in determining accurate depth sizing. In 2015 a Canadian pipeline operator determined the need to inspect one of their 16” assets for axial crack-like indications. During the analysis of this inspection data set, a number of saturated crack-like indications were reported. Saturated cracklike signals present a challenge to operators as they have to be considered in a conservative manner as 4mm or deeper which in turn leads to difficulties in the prioritization of resources associated with the excavation program. The operator approached NDT Global in 2017, after the release of NDT Global’s Enhanced sizing depth algorithm to reevaluate the features that were present in the previous crack inspection data set. Working together with the operator, NDT Global applied the Enhanced sizing methodology to all features of significance in the pipeline segment and compared the results to lab measurements and in field NDE measurements. The outcome of the reanalysis using the most up to date software algorithms utilizing enhanced sizing showed great benefits by increasing the accuracy of the crack depth sizing as NDT Global was now able to report full through wall depth sizing, however there were still some limitations on the ability to accurately size crack-like features as the primary threat is believed to be a result of hook cracks. As a final step in this program NDT Global was provided sample spools that were cut out of the pipeline segment to perform a pull testing campaign utilizing the newest crack detection technology that was specifically targeted towards accurately sizing tilted and skewed crack like features. The authors will briefly discuss the pipeline system and inspection campaign and in detail will discuss the benefits of using technology that has been developed to help pipeline operators better understand the threats in their integrity management program.

Author(s):  
Mark Slaughter ◽  
Kevin Spencer ◽  
Jane Dawson ◽  
Petra Senf

Ultrasonic inline inspection (ILI) tools have been used in the oil and gas pipeline industry for the last 14 years to detect and measure cracks. The detection capabilities of these tools have been verified through many field investigations. ILI ultrasonic crack detection has good correlation with the crack layout on the pipe and estimating the maximum crack depth for the crack or colony. Recent analytical developments have improved the ability to locate individual cracks within a colony and to define the crack depth profile. As with the management of corroding pipelines, the ability to accurately discriminate active from non-active cracks and to determine the rate of crack growth is an essential input into a number of key integrity management decisions. For example, in order to identify the need for and timing of field investigations and/or repairs and to optimize re-inspection intervals crack growth rates are a key input. With increasing numbers of cracks and crack colonies being found in pipelines there is a real need for reliable crack growth information to use in prioritizing remediation activities and planning re-inspection intervals. So as more and more pipelines containing cracks are now being inspected for a second time (or even third time in some cases), the industry is starting to look for quantitative crack growth information from the comparison of repeat ultrasonic crack detection ILI runs. This paper describes the processes used to analyze repeat ultrasonic crack detection ILI data and crack growth information that can be obtained. Discussions on how technical improvements made to crack sizing accuracy and how field verification information can benefit integrity plans are also included.


Author(s):  
Garry L. Sommer ◽  
Brad S. Smith

Enbridge Pipelines Inc. operates one of the longest and most complex pipeline systems in the world. A key aspect of the Enbridge Integrity Management Program (IMP) is the trending, analysis, and management of data collected from over 50 years of pipeline operations. This paper/presentation describes Enbridge’s challenges, learnings, processes, and innovations for meeting today’s increased data management/integration demands. While much has been written around the premise of data management/integration, and many software solutions are available in the commercial market, the greatest data management challenge for mature pipeline operators arises from the variability of data (variety of technologies, data capture methods, and data accuracy levels) collected over the operating history of the system. Ability to bring this variable data set together is substantially the most difficult aspect of a coordinated data management effort and is critical to the success of any such project. Failure to do this will result in lack of user confidence and inability to gain “buy-in” to new data management processes. In 2001 Enbridge began a series of initiatives to enhance data management and analysis. Central to this was the commitment to accurate geospatial alignment of integrity data. This paper/presentation describes Enbridge’s experience with development of custom software (Integrated Spatial Analysis System – ISAS) including critical learnings around a.) Data alignment efforts and b.) Significant efforts involved in development of an accurate pipe centreline. The paper/presentation will also describe co-incident data management programs that link to ISAS. This includes enhanced database functionality for excavation data and development of software to enable electronic transfer of data to this database. These tools were built to enable rapid transfer of field data and “real time” tool validation through automated unity plots of tool defect data vs. that measured in the field.


Author(s):  
Abdullahi Atto ◽  
Marius Grigat ◽  
Jens Voss

Since the market launch of Ultrasonic crack detection tools, the conventional crack depth sizing is based on four depth classes or buckets. A more differentiated, continuous depth sizing is becoming increasingly relevant for the pipeline operators and especially for pipelines with large populations of planar anomalies (SCC colonies, lack-of-fusion in ERW seam-welds, etc.). The ILI industry is introducing a continuous crack depth sizing. Next to the better differentiation and the linearity of the depth reporting, the main advantage of the continuous depth sizing is the direct comparability to the results of the field verifications. The continuous depth sizing improves the ability to assess the performance validation of the depth sizing and thus, contributes to a general improvement of the crack depth sizing. This paper describes the development and implementation of a continuous crack depth sizing approach and shows its advantages in comparison to the conventional depth classes. A sizing model is introduced, making use of an empirically derived function, that relates the amplitude measurement to the defect depth. The continuous depth sizing applies to crack-like defects with depths ranging from 1mm to 4mm. The parameters of the model are derived from performance tests based on artificial flaws. In addition, the model is validated by means of field verification results. The depth sizing accuracy and confidence levels are obtained from the performance test data in accordance to API 1163 [1] and POF 2009 [2]. In addition, the paper discusses the extraction of the crack depth profiles from inspection data, making use of the newly developed continuous depth sizing model. In comparison to standard reporting of maximum depth and length, crack depth profiles deliver more accurate and more valuable input to the integrity assessment for pipeline operators. Examples of a direct comparison of these crack depth profiles to field verification data are included.


Author(s):  
Walter Kresic ◽  
Scott Ironside

The focus of the Enbridge Integrity Management System is to prevent leaks or ruptures caused by all duty-related pipe deterioration including SCC. As with all pipe defect types, ongoing monitoring programs are employed to determine whether SCC has occurred. Where it has, preventative maintenance programs are employed to mitigate the SCC. Where required, Enbridge employs high-resolution crack in-line inspection (ILI) as the most precise method for managing SCC. As a member of the Canadian Energy Pipeline Association (CEPA), Enbridge participated in the development of a basic framework for SCC management programs and has adopted this framework as the basis for the Enbridge program. Ultrasonic crack detection ILI, capable of detecting SCC, has been employed on over 3000 km of Enbridge pipe and several hundred investigative excavations have been conducted in relation to the ILI data. The results gathered from these investigations have been trended to define the effectiveness of crack detection ILI to detect, size, and discriminate SCC defects. This paper and presentation describes Enbridge’s experience utilizing ultrasonic crack detection ILI for SCC management. The Enbridge trends have shown that ILI can be reliably utilized to detect SCC but, additional innovation is required for defect sizing. While ILI sizing is limited, trends developed from field inspection data have provided the ability to categorize ILI signals into general classifications that ensure all relevant SCC features are highlighted. The categorization is accurate but added precision would reduce the number of investigative excavations, which currently, are also conducted on many sub-relevant features. Coincident with SCC activities driven by ILI data, trends were also developed for peripheral aspects such as field NDT technology, fitness-for-purpose equations, and SCC initiation and growth causes. Observations and trends related to these activities are also described herein.


Author(s):  
Neil Bates ◽  
Mark Brimacombe ◽  
Steven Polasik

A pipeline operator set out to assess the risk of circumferential stress corrosion cracking and to develop a proactive management program, which included an in-line inspection and repair program. The first step was to screen the total pipeline inventory based on pipe properties and environmental factors to develop a susceptibility assessment. When a pipeline was found to be susceptible, an inspection plan was developed which often included ultrasonic circumferential crack detection in-line inspection and geotechnical analysis of slopes. Next, a methodology was developed to prioritize the anomalies for investigation based on the likelihood of failure using the provided in-line inspection sizing data, crack severity analysis, and correlation to potential causes of axial or bending stress, combined with a consequence assessment. Excavation programs were then developed to target the anomalies that posed the greatest threat to the pipeline system or environment. This paper summarizes the experiences to date from the operator’s circumferential stress corrosion cracking program and describes how the pipeline properties, geotechnical program, and/or in-line inspection programs were combined to determine the susceptibility of each pipeline and develop excavation programs. In-line inspection reported crack types and sizes compared to field inspection data will be summarized, as well as how the population and severity of circumferential stress corrosion cracking found compares to the susceptible slopes found in the geotechnical program completed. Finally, how the circumferential SCC time-average growth rate distributions were calculated and were used to set future geohazard inspections, in-line inspections, or repair dates will be discussed.


Author(s):  
Miaad Safari ◽  
David Shaw

Abstract As integrity programs mature over the life of a pipeline, an increasing number of data points are collected from second, third, or further condition monitoring cycles. Types of data include Inline Inspection (ILI) or External Corrosion Direct Assessment (ECDA) inspection data, validation or remediation dig information, and records of various repairs that have been completed on the pipeline system. The diversity and massive quantity of this gathered data proposes a challenge to pipeline operators in managing and maintaining these data sets and records. The management of integrity data is a key element to a pipeline system Integrity Management Program (IMP) as per the CSA Z662[1]. One of the most critical integrity datasets is the repair information. Incorrect repair assignments on a pipeline can lead to duplicate unnecessary excavations in the best scenario and a pipeline failure in the worst scenario. Operators rely on various approaches to manage and assign repair data to ILIs such as historical records reviews, ILI-based repair assignments, or chainage-based repair assignments. However, these methods have significant gaps in efficiency and/or accuracy. Failure to adequately manage excavation and repair data can lead to increased costs due to repeated excavation of an anomaly, an increase in resources required to match historical information with new data, uncertainty in the effectiveness of previous repairs, and the possibility of incorrect assignment of repairs to unrepaired features. This paper describes the approach adopted by Enbridge Gas to track and maintain repairs, as a part of the Pipeline Risk and Integrity Management (PRIM) platform. This approach was designed to create a robust excavation and repair management framework, providing a robust system of data gathering and automation, while ensuring sufficient oversight by Integrity Engineers. Using this system, repairs are assigned to each feature in an excavation, not only to a certain chainage along the pipeline. Subsequently, when a new ILI results report is received, a process of “Repair Matching” is completed to assign preexisting repairs and assessments to the newly reported features at a feature level. This process is partially automated, whereby pre-determined box-to-box features matched between ILIs can auto-populate repairs for many of the repaired features. The proposed excavation management system would provide operators a superior approach to managing their repair history and projecting historical repairs and assessments onto new ILI reports, prior to assessing the ILI and issuing further digs on the pipeline. This optimized method has many advantages over the conventional repair management methods used in the industry. This method is best suited for operators that are embarking on their second or third condition monitoring cycle, with a moderate number of historical repairs.


Author(s):  
M. Robb Isaac ◽  
Saleh Al-Sulaiman ◽  
Monty R. Martin ◽  
Sandeep Sharma

In early 2005, Kuwait Oil Company (KOC) initiated a Total Pipeline Integrity Management System (TPIMS) implementation in order to carry out a major integrity assessment of its operating facilities, equipment, buried plant piping and pipeline network and to establish a continuing integrity management program. KOC Transit System is a complex infrastructure consisting of over three hundred pipelines, thousands of wellhead flow lines, and consumer and offshore lines for which there was a significant loss of data when the facilities were destroyed during a military invasion in 1990. An initial pipeline system assessment identified issues and actions regarding condition of the pipelines, corridors, requirements on in-line inspection (ILI), documentation, RISK assessment, status of international code compliance, and overall state of the system. Following recommendations from that initial assessment led to the development of a long term strategy; the execution of which required the implementation of a comprehensive integrity management program. This case study discusses the results obtained after five years of implementation of TPIMS at KOC. It will demonstrate some of the complex components involved in managing the integrity of the Transit System that have been made possible through the implementation of the system. The general concept and structure of TPIMS will be described, and how it deals with the complexity of the KOC pipeline system. The system made it possible to integrate and manage data from various sources, by conducting integrity assessment using ILI, Direct Assessment and hydrostatic testing, as well as structure a comprehensive RISK & Decision Support mechanism. This is one of the world’s first implementations of this magnitude which encompasses such a wide range of services and variables; all being managed in a single environment and utilized by a multitude of users in different areas at KOC. The biggest challenge in a project of this scope is data management. Examples will be shown of the integration structure to illustrate the benefits of using a single comprehensive and versatile platform to manage system requirements; ultimately providing system reliability and improving overall operational efficiency.


Author(s):  
Kevin Spencer ◽  
Shahani Kariyawasam ◽  
Cathy Tetreault ◽  
Jon Wharf

Corrosion growth rates are an essential input into an Integrity Management Program but they can often be the largest source of uncertainty and error. A relatively simple method to estimate a corrosion growth rate is to compare the size of a corrosion anomaly over time and the most practical way to do this for a whole pipeline system is via the use of In-Line Inspection (ILI). However, the reported depth of the anomaly following an ILI run contains measurement uncertainties, i.e., sizing tolerances that must be accounted for in defining the uncertainty, or error associated with the measured corrosion growth rate. When the same inspection vendor performs the inspections then proven methods exist that enable this growth error to be significantly reduced but these methods include the use of raw inspection data and, specialist software and analysis. Guidelines presently exist to estimate corrosion growth rates using inspection data from different ILI vendors. Although well documented, they are often only applicable to “simple” cases, pipelines containing isolated corrosion features with low feature density counts. As the feature density or the corrosion complexity increases then different reporting specifications, interaction rules, analysis procedures, sizing models, etc can become difficult to account for, ultimately leading to incorrect estimations or larger uncertainties regarding the growth error. This paper will address these issues through the experiences of a North American pipeline operator. Accurately quantifying the reliability of pipeline assets over time requires accurate corrosion growth rates and the case study will demonstrate how the growth error was significantly reduced over existing methodologies. Historical excavation and recoat information was utilized to identify static defects and quantify systemic bias between inspections. To reduce differences in reporting and the analyst interpretation of the recorded magnetic signals, novel analysis techniques were employed to normalize the data sets against each other. The resulting uncertainty of the corrosion growth rates was then further reduced by deriving, and applying a regression model to reduce the effect of the different sizing models and the identified systemic bias. The reduced uncertainty ultimately led to a better understanding of the corrosion activity on the pipeline and facilitated a better integrity management decision process.


Author(s):  
Maria F. Contreras ◽  
Mauricio Pereira Ordoñez ◽  
Jon Hernández ◽  
Carlos Vergara

The OCENSA pipeline system crosses a wide range of geological zones, finding different stability problems. Those problems related with landslides are stabilized with different kinds of geotechnical works within the pipeline maintenance programs, but sometimes these problems reach big dimensions making very difficult to stabilize them, so mitigation techniques are necessary in order to guarantee the pipe integrity. A mitigation technique using EPS (Expanded Poly-Styrene) blocks is being used in the OCENSA pipeline system (Colombia) in order to reduce the buried pipe response due to soil displacements during landslide events and in creeping slopes. OCENSA is the first operator in Latin America using this technique. Prior to the use of this technique, numerical modeling studies were done with the support of SOLSIN S.A.S. These studies were focused on determining the viability and effectiveness of the proposed technique. The purpose of the EPS blocks is to constitute a low-density fill with very low Young modulus reducing the soil-pipeline interaction forces. These blocks are located near the landslide limits in both, the stable and un-stable zones in order to reduce the stiffness of the materials around the pipe. These blocks allow the pipe to move beyond the landslide limits, reducing the bending strains. The extension of the EPS backfill is determined by means of the geotechnical investigation of the place in study and using the in-line inspection tools data to determine the length of the pipe affected by the soil movement. In this paper, three case studies are presented in which the proposed mitigation technique effectiveness was proved. In this part, data analyses coming from the in line inspection program was done. The inertial tool data showed that the EPS blocks had a significant effect on the pipe response, reducing the total strains compared with those obtained with a normal backfill. This technique can be used to reduce the frequency of the strain-relief excavations in unstable slopes. That means a cost reduction in the pipe maintenance activities and a more efficient integrity management program.


Author(s):  
Kaitlyn Korol ◽  
Yvan Hubert ◽  
Gordon Fredine ◽  
Petra Senf ◽  
Sherry-Ann Koon Koon

Inline Inspection (ILI) tools along with hydrostatic testing have been the primary identification and mitigation techniques for cracking threats on liquids pipelines. Each technique faces detection challenges in relation with the weld type, geometry, and feature types, sizes and orientations. Low frequency electric resistance welds (LF ERWs) are subject to a number of crack-like defects due to the ERW manufacturing process. These defects may include fatigue cracks, lack of fusion, burned metal defects, stitched welds, cold welds, cracks in hard HAZ, surface breaking hook cracks near the weld and selective seam corrosion [1]. Within a population of features in a pipeline, a subpopulation can exist of short, deep defects (>50% wt) that may be undersized by the ILI tool or not detected by a hydrostatic test due to the length of the flaw. For ILI tools, a length detection threshold is set based on the tool speed (which is dictated by the tool type and configuration). A feature may be undersized by the ILI tool if its length is below this tool threshold. For hydrostatic testing, through-wall flaws may be undetected if the flaw length is below the critical length for a significant leak. Through detailed ILI data analysis, Enbridge along with PII Pipeline Solutions has been able to consistently identify short and deep crack-related defects on LF ERW pipe through means other than feature dimensions provided by the ILI tool. In-ditch non-destructive examination and destructive laboratory testing has confirmed these features are critical and fall below current ILI tool’s detection thresholds. This paper discusses unique ILI data attributes that may identify a more severe feature than would conventional ILI sizing practices, and how the identification and selection procedure is being applied across Enbridge’s pipeline system. This analysis effort aligns with Enbridge’s goal to continuously improve its integrity management processes and further enhance the safety of its pipelines.


Sign in / Sign up

Export Citation Format

Share Document