Multi Tiered Approach to Slope Movement Management: Case Study

Author(s):  
Millan Sen ◽  
John Richmond ◽  
Aaron Dinovitzer ◽  
Abdelfettah Fredj

A major slope in southern Manitoba is currently experiencing deep seated movements of approximately 60mm per year. This 20m high × 70m long slope contains a pipeline right of way with five large diameter crude oil lines that were constructed from 1950–1998. It is estimated that the slope has moved over 3 meters since the pipeline installations. Management of the effects of this slope movement on the pipelines has involved cross-functional strategies that include geotechnical, integrity, and stress evaluations. The slope is assessed annually by a geotechnical engineer, and the most likely cause for the slope movements has been determined. Slope monitoring equipment has been installed at key locations and is monitored at frequent intervals. A toe berm has been installed to prevent lower slope failure at the creek bed that is located at the slope toe. A finite element stress analysis, which considers the interaction between the soil movement and pipeline, has been generated. This stress analysis evaluated the pipeline stresses due to the slope movements to date, and also due to a possible sudden mass movement. The results are backed up by a bending strain analysis based on inertial in-line inspection data was conducted for several of the lines. This paper presents an overview of the engineering assessment considering structural, material, geotechnical and operational concerns involved in developing an integrity management action plan.

Author(s):  
Abdelfettah Fredj ◽  
Aaron Dinovitzer

Pipelines installed on active slopes can be exposed to slope failure mechanisms. The soil movement can introduce substantial axial and bending strains on buried pipeline, and possibly damage. The techniques to predict pipeline displacements, loads, stress or strains are not well described in design standards or codes of practice. The practice of using finite element analysis of soil-pipe interaction has developed in recent years and is proving to be a useful tool in evaluating the pipeline behavior in response to slope movement. A description of advanced pipe soil interaction modeling tools and their validation against full scale trails has been previously presented. This paper describes the ongoing work involved in a study investigating the mechanical behavior of buried pipelines interacting with active slope movement and evaluation of pipeline strain demand. Detailed pipe-soil interaction analyses were completed with a 3D continuum SPH (Smooth Particle Hydrodynamic) model to examine the pipeline behavior and evaluate the pipeline strain demand in relation to key parameters. This includes the effect of soil movement mechanism, pipeline geometry (D/t), material grade, pipeline burial depth and soil conditions and properties. Sample results of the application of the validated 3D continuum modeling process will be presented. The strain demand determined from the analyses were compared with calculated CSA-Z662 strain limit design, local FEA analyses and BS 7910. These results are being used to develop generalized trends in pipeline response to slope movements.


1996 ◽  
Vol 24 (4) ◽  
pp. 349-366 ◽  
Author(s):  
T-M. Wang ◽  
I. M. Daniel ◽  
K. Huang

Abstract An experimental stress-strain analysis by means of the Moiré method was conducted in the area of the tread and belt regions of tire sections. A special loading fixture was designed to support the tire section and load it in a manner simulating service loading and allowing for Moiré measurements. The specimen was loaded by imposing a uniform fixed deflection on the tread surface and increasing the internal pressure in steps. Moiré fringe patterns were recorded and analyzed to obtain strain components at various locations of interest. Maximum strains in the range of 1–7% were determined for an effective inflation pressure of 690 kPa (100 psi). These results were in substantial agreement with results obtained by a finite element stress analysis.


2021 ◽  
Author(s):  
Janusz Wasowski ◽  
Maurice McSaveney ◽  
Luca Pisanu ◽  
Vincenzo Del Gaudio ◽  
Yan Li ◽  
...  

<p>Large earthquake-triggered landslides, in particular rock avalanches, can have catastrophic consequences. However, the recognition of slopes prone to such failures remains difficult, because slope-specific seismic response depends on many factors including local topography, landforms, structure and internal geology. We address these issues by exploring the case of a rock avalanche of >3 million m<sup>3</sup> triggered by the 2008 Mw7.9 Wenchuan earthquake in the Longmen Shan range, China. The failure, denominated Yangjia gully rock avalanche, occurred in Beichuan County (Sichuan Province), one of the areas that suffered the highest shaking intensity and death toll caused by co-seismic landsliding. Even though the Wenchuan earthquake produced tens of large (volume >1 million m<sup>3</sup>) rock avalanches, few studies so far have examined the pre-2008 history of the failed slope or reported on the stratigraphic record of mass-movement deposits exposed along local river courses. The presented case of the Yangjia gully rock avalanche shows the importance of such attempts as they provide information on the recurrence of large slope failures and their associated hazards. Our effort stems from recognition, on 2005 satellite imagery, of topography and morphology indicative of a large, apparently pre-historic slope failure and the associated breached landslide dam, both features closely resembling the forms generated in the catastrophic 2008 earthquake. The follow-up reconstruction recognizes an earlier landslide deposit exhumed from beneath the 2008 Yangjia gully rock avalanche by fluvial erosion since May 2008. We infer a seismic trigger also for the pre-2008 rock avalanche based on the following circumstantial evidence: i) the same source area (valley-facing, terminal portion of a flat-topped, elongated mountain ridge) located within one and a half kilometer of the seismically active Beichuan fault; ii) significant directional amplification of ground vibration, sub-parallel to the failed slope direction, detected via ambient noise measurements on the ridge adjacent to the source area of the 2008 rock avalanche and iii) common depositional and textural features of the two landslide deposits. Then, we show how, through consideration of the broader geomorphic and seismo-tectonic contexts, one can gain insight into the spatial and temporal recurrence of catastrophic slope failures  in Beichuan County and elsewhere in the Longmen Shan. This insight, combined with local-scale geologic and geomorphologic knowledge, may guide selection of suspect slopes for reconnaissance, wide-area ambient noise investigation aimed at discriminating their relative susceptibility to co-seismic catastrophic failures. We indicate the feasibility of such investigations through the example of this study, which uses 3-component velocimeters designed to register low amplitude ground vibration.</p>


BioResources ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 3799-3808
Author(s):  
Ján Melicherčík ◽  
Jozef Krilek ◽  
Pavol Harvánek

This study focused on stress and strain analysis of the cutting force of a branch knife with a replaceable cutting edge. The replaceable edge forms part of the delimbing head, which is applied to the arms of a mechanical harvester working in forestry. Basic parameters of the knife and head of the harvester with the basic calculations necessary to determine the number of knives based on input parameters, such as wood diameter, woody plants, and determination of the cutting force acting on the cutting knife, were examined. Based on the cutting force and the design of the special cutting knife, a stress analysis and a finite element method (FEM) was performed. This study confirmed the correctness of the selected material to produce the delimbing knife, which was designed using a replaceable cutting edge. The output of the stress analysis is reported.


Author(s):  
Wenwei Zhang ◽  
Zhenyong Zhang ◽  
Jinyuan Zhang ◽  
Peng Yang

China National Petroleum Corporation (CNPC) has constructed large-diameter high-strength pipelines (X70 and X80) in the past decades in areas of seismic activities, mine subsidence, and slope movement using strain-based design (SBD) technology. More pipelines being constructed now traverse regions of active seismic activities, mine subsidence, slope movement, and discontinuous permafrost. CNPC is also interested in moving to linepipe grades higher than X80. In view of the recent development of various tensile strain models, work was undertaken to evaluate those models and determine the most appropriate models for current and future applications. In this paper, selected tensile strain models are reviewed and evaluated against an experimental database. The database of 80 tests from public-domain publications contains both full-scale pipe tests and curved wide plate tests with 46 tests from high strength pipes (X80 and above). The calculated tensile strain capacity from the selected models was compared with the test data. The models were evaluated and the applicability of the models to the linepipes of different strength levels was discussed.


2004 ◽  
Vol 4 (2) ◽  
pp. 187-196 ◽  
Author(s):  
M. Jaboyedoff ◽  
P. Ornstein ◽  
J.-D. Rouiller

Abstract. The need for monitoring slope movements increases with the increasing need for new areas to inhabit and new land management requirements. Rock-slope monitoring implies the use of a database, but also the use of other tools to facilitate the analysis of movements. The experience and the philosophy of monitoring the top of the Randa rockfall scar which is sliding down into the valley near Randa village in Switzerland are presented. The database includes data correction tools, display facilities and information about benchmarks. Tools for analysing the movement acceleration and spatial changes and forecasting movement are also presented. Using the database and its tools it was possible to discriminate errors from critical slope movement. This demonstrates the efficiency of these tools in monitoring the Randa scar.


Author(s):  
Adam Emmer

Glacier retreat is considered to be one of the most obvious manifestations of recent and ongoing climate change in the majority of glacierized alpine and high-latitude regions throughout the world. Glacier retreat itself is both directly and indirectly connected to the various interrelated geomorphological/hydrological processes and changes in hydrological regimes. Various types of slope movements and the formation and evolution of lakes are observed in recently deglaciated areas. These are most commonly glacial lakes (ice-dammed, bedrock-dammed, or moraine-dammed lakes). “Glacial lake outburst flood” (GLOF) is a phrase used to describe a sudden release of a significant amount of water retained in a glacial lake, irrespective of the cause. GLOFs are characterized by extreme peak discharges, often several times in excess of the maximum discharges of hydrometeorologically induced floods, with an exceptional erosion/transport potential; therefore, they can turn into flow-type movements (e.g., GLOF-induced debris flows). Some of the Late Pleistocene lake outburst floods are ranked among the largest reconstructed floods, with peak discharges of up to 107 m3/s and significant continental-scale geomorphic impacts. They are also considered capable of influencing global climate by releasing extremely high amounts of cold freshwater into the ocean. Lake outburst floods associated with recent (i.e., post-Little Ice Age) glacier retreat have become a widely studied topic from the perspective of the hazards and risks they pose to human society, and the possibility that they are driven by anthropogenic climate change. Despite apparent regional differences in triggers (causes) and subsequent mechanisms of lake outburst floods, rapid slope movement into lakes, producing displacement waves leading to dam overtopping and eventually dam failure, is documented most frequently, being directly (ice avalanche) and indirectly (slope movement in recently deglaciated areas) related to glacial activity and glacier retreat. Glacier retreat and the occurrence of GLOFs are, therefore, closely tied, because glacier retreat is connected to: (a) the formation of new, and the evolution of existing, lakes; and (b) triggers of lake outburst floods (slope movements).


2019 ◽  
Vol 70 (1) ◽  
pp. 51-59
Author(s):  
Seid Hajdarević ◽  
Murčo Obućina ◽  
Elmedin Mešić ◽  
Sandra Martinović

In this paper, the stress and strain analysis of common laminated wood seat shell is performed. Experimental stiffness evaluation is conducted by measuring displacement of the point on the backrest, and experimental stress analysis is carried out by tensometric measuring at the critical transition area from the seat to the backrest. Finite element analysis is carried out layer by layer with a “2D linear elastic model” for orthotropic materials. Good matching is found between numerical and experimental results of displacement. It is also shown that the results of the principal stress in the measurement points of the seat shell compare favourably with experimental data. The applied in-plane stress analysis of each individual veneer is not applicable for interlaminar stress calculations that are a significant factor in curved forms of laminated wood. Curved forms of laminated wood products require more complex numerical analysis, but the method can be used to achieve approximate data in early phase of product design.


2011 ◽  
Vol 11 (5) ◽  
pp. 1463-1473 ◽  
Author(s):  
J. Burda ◽  
L. Žižka ◽  
J. Dohnal

Abstract. Recent mass movements currently comprise one of the main morphogenetic processes in the extensive anthropogenic relief of the foreground of the Krušné Hory Mountains in the Czech Republic. These mass movements result in several types of deep-seated slope failures, depending on the type of movement and the water saturation of the landslide material. This paper presents the results of a detailed geomorphic survey and orthophotograph analysis combined with geodetic monitoring data in an area affected by open-pit coal mining. An interdisciplinary approach has enabled an in-depth review of both the dynamics and development of recent slope failures. The article describes deep-seated landslide complex in this part of the foothills of the Krušné Hory Mountains. At the study site, mass movements occur in thick colluvial mantle and weathered Tertiary claystones. The main factors influencing their development include rainfall culminations, groundwater flowing from the valley of Šramnický Brook and former slope failures. All of the slope failures that have occurred here have originated at former slope failure sites.


Author(s):  
Tom Henry Bernabe Castro ◽  
John Erick Malpartida Moya

By their nature, Pipeline Transmission Systems are exposed to threats from various sources. These include the threat of Weather and Outside Forces (WOF), this threat has a destructive potential associated with landslides, creeping, soil erosion and scouring in rivers, etc. Their hazards increase when pipelines are installed in areas with a tropical climate, having rains of a magnitude that often tend to destabilize the soil surrounding the pipelines, affecting its integrity and therefore the safety of people and the environment. The identification and monitoring of geotechnical risk areas, using inertial data, is based on the reprocessing and analysis of the raw data provided by in line inspection tools. The result of this analysis, after the noise reduction process using a variety of filters at different intervals, reveals areas where there is possible deformation. These zones are transformed into indications that are studied by an analyst, correlating other data sources such as terrain topography, soil characteristics, hydrology, ground motion records, ILI records (caliper records, MFL records, etc.), as-built data, stress concentrators, etc. The analyst determines if they are pipeline deformations due to soil movement or if the indication is caused by another source such as the noise caused by the electronic components of the tool, the operating conditions during the inspection, the filtering process, etc. Areas with signs of strain are evaluated to determine the tensional state in critical conditions for each specific case. If the stresses are close to the limits, a field inspection and an action plan are needed for each case. In certain cases, according to the experts, field indications are evaluated to verify the data obtained by the ILI Tool and to simultaneously give feedback to the noise reduction process. The execution of the calculation process allows the monitoring and identification of geotechnical risk areas, providing better control over parameters such as limits for reporting indications, control of discrimination and selection criteria, detailed assessment of each indication, etc. Finally, this process provides the opportunity to obtain additional information from the ILI inspection such as unregistered bending, misaligned welds, areas with excess root welding, etc.


Sign in / Sign up

Export Citation Format

Share Document