Formation and Control of a Rotating Magnetic Field in Magnetic Abrasive Finishing

Author(s):  
Thamir Al-dulaimi ◽  
Mir Behrad Khamesee

Surface finishing is the final operation in manufacturing processes and it costs around 15% of the total manufacturing cost [1]. A high quality surface with very low values of surface roughness and high accuracy are required for some products in many applications. These characteristics are required especially for products with a complex shape which are made from advanced materials such as alloys of hard materials, glass, and ceramics.

2017 ◽  
Vol 3 (1) ◽  
Author(s):  
Lida Heng ◽  
Yon Jig Kim ◽  
Sang Don Mun

AbstractRecent developments in the engineering industry have created a demand for advanced materials with superior mechanical properties and high-quality surface finishes. Some of the conventional finishing methods such as lapping, grinding, honing, and polishing are now being replaced by non-conventional finishing processes. Magnetic Abrasive Finishing (MAF) is a non-conventional superfinishing process in which magnetic abrasive particles interact with a magnetic field in the finishing zone to remove materials to achieve very high surface finishing and deburring simultaneously. In this review paper, the working principles, processing parameters, and current limitations for the MAF process are examined via reviewing important work in the literature. Additionally, future developments of the MAF process are discussed.


2006 ◽  
Vol 304-305 ◽  
pp. 379-383 ◽  
Author(s):  
P.X. Yao ◽  
H.L. Chen ◽  
Jian Mei Wang ◽  
Shu Cai Yang ◽  
Y.X. Zhang

Magnetic abrasive finishing (MAF) is a processing technology using magnetic abrasive grain (MAG) under magnetic field to finish surface of workpiece. The magnetic fields used in MAF include permanent magnetic field and electromagnetic field. Two conditions must be taken into consideration in the finishing surface of workpiece. One is the sufficient cutting force; the other is the relative moving speed between MAG and workpiece. The principle of step-motor rotating magnetic field is used to produce rotating magnetic field (RMF) in this paper. RMF brings MAG to rotate and keeps workpiece immovable. Meanwhile, the coins vibrate within a definite angle range and reciprocate in axial direction so as to process the outer cylindrical surfaces. Yoke iron is made of two halves so that the coins for rotating magnetic field will be keyed to some section of heavy crankshaft, thus realizing cylindrical surface finishing on the heavy crankshaft. MAG are of importance to MAF . Six performance indexes related to MAG are suggested by studying on process parameters.


2010 ◽  
Vol 107 ◽  
pp. 15-19 ◽  
Author(s):  
Miguel Álvarez ◽  
Moisés Batista ◽  
Jorge Salguero ◽  
Manuel Sánchez-Carrilero ◽  
Mariano Marcos Bárcena

In the last decades, technologically innovative processes performed in advanced materials such as Carbon Fibre (CF) and Metal Matrix Composites (MMC) have continuously increased because of these materials find increasingly applications in the most of the industrial sectors, particularly in aeronautical industry. This is caused by their excellent relationship weight/mechanical properties. Although there is a high trend to apply and develop non-conventional technologies and methods for machining CF and MMC, other common machining processes are commonly applied for working these materials. Thus, in aeronautical industry, mechanical drilling processes are usually applied for preparing the manufactured elements to be assembled. However, drilling of CF based materials can carry on troubles related to a loss of surface finishing quality and/or quick and high tool wear. This work reports on the results about an evaluation process of the surface quality of drilled CF samples as a function of the cutting conditions and the tool materials.


2018 ◽  
Vol 224 ◽  
pp. 01078
Author(s):  
Nicolay V. Nosov ◽  
Andrey A. Cherepashkov

The article discusses the problems of computer aided design and technological preparation of production of complex shape parts on machines with numerical program control. An integrated technique for designing processes and control programs for CNC machines is proposed and described, using the technique of software-based referencing and modern electronic measuring tools.


2020 ◽  
Vol 8 (3) ◽  
Author(s):  
Jason Ratay ◽  
Pei-Ying Wu ◽  
Alex Feirvezers ◽  
Hitomi Yamaguchi

Abstract Nickel-based superalloys have a wide range of high-temperature applications such as turbine blades. The complex geometries of these applications and the specific properties of the materials raise difficulties in the surface finishing. Magnetic abrasive finishing (MAF) has proven effective in finishing the complex geometries. In MAF, the magnetic properties of the workpiece, tool, and abrasive play important roles in controlling finishing characteristics. This paper presents the effects of nickel coating on the abrasive behavior during finishing and resulting finishing characteristics of Ni-based superalloys. The Ni-coated diamond abrasive is more attracted to the magnet than the Ni-based superalloy surface. As a result, fewer Ni-coated diamond abrasive particles, which are stuck between the magnetic-particle brush and the target surface, participate in surface finishing. Because of this, coupled with the reduced sharpness of abrasive cutting edges due to the coating, Ni-coated diamond abrasive cannot effectively smooth the target surface in MAF. However, the Ni coating is worn off during finishing of the hard, rough, additively manufactured surface. Then, the diamond abrasive participates in finishing as uncoated diamond abrasive and facilitates the material removal, finishing the target surface.


Machines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 75
Author(s):  
Huijun Xie ◽  
Yanhua Zou

The magnetic abrasive finishing (MAF) process is an ultra-precision surface finishing process. In order to further improve the finishing efficiency and surface quality, the MAF process using an alternating magnetic field was proposed in the previous research, and it was proven that the alternating magnetic field has advantages compared with the static magnetic field. In order to further develop the process, this study investigated the effect on finishing characteristics when the alternating current waveform is a square wave. The difference between the fluctuation behavior of the magnetic cluster in two alternating magnetic fields (sine wave and square wave) is observed and analyzed. Through analysis, it can be concluded that the use of a square wave can make the magnetic cluster fluctuate faster, and as the size of the magnetic particles decreases, the difference between the magnetic cluster fluctuation speed of the two waveforms is greater. The experimental results show that the surface roughness of SUS304 stainless steel plate improves from 328 nm Ra to 14 nm Ra within 40 min.


Sign in / Sign up

Export Citation Format

Share Document