Modeling and Analysis of Touch on the Flexible Ultra-Thin Touch Panel by Using the Finite Element Method

Author(s):  
Paul C.-P. Chao ◽  
Kuo-Yu Chou ◽  
Chang-Xian Wu ◽  
Chuan-Xin Chen ◽  
Yi-Chuan Lu ◽  
...  

The work employs the finite element method to model the finger touch on the flexible ultra-thin touch panel for analyzing the touch signal. The touch signal generates the ghost points when the fingers multi-touch on the flexible ultra-thin touch panel. The simulation of minimizing the top layer (over cover) thickness based on the model is conducted in order to eliminate the ghost points. The simulation results show the over cover thickness should be larger than 107 μm to eliminate the ghost points. Further, we propose the method to solve the ghost points and minimize the over cover thickness. The simulation results conducted in this proposed method show that the over cover thickness can be reduced further to 65 μm.

Author(s):  
Soroosh Hassanpour ◽  
G. R. Heppler

This paper is devoted to the dynamic modeling of micropolar gyroelastic beams and explores some of the modeling and analysis issues related to them. The simplified micropolar beam torsion and bending theories are used to derive the governing dynamic equations of micropolar gyroelastic beams from Hamilton’s principle. Then these equations are solved numerically by utilizing the finite element method and are used to study the spectral and modal behaviour of micropolar gyroelastic beams.


2015 ◽  
Vol 1096 ◽  
pp. 417-421
Author(s):  
Pei Luan Li ◽  
Zi Qian Huang

By the use of finite element method, this paper predicts the effects of the shapes of reinforcements with different ductility (Co) on the effective elastic response for WC-Co cemented carbide. This paper conducts a comparative study on the material properties obtained through theoretical model, numerical simulation and experimental observations. Simulation results indicate that the finite element method is more sophisticated than the theoretical prediction.


2018 ◽  
Vol 69 (2) ◽  
pp. 324-327
Author(s):  
Agata Sliwa ◽  
Marek Sroka ◽  
Katarzyna Bloch ◽  
Ioan Gabriel Sandu ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
...  

A numerical model was made to establish the casting hardness for the magnesium alloys MCMgAl12Zn1, MCMgAl6Zn1, MCMgAl3Zn1 and MCMgAl9Zn1. Computer simulation of hardness was performed using the finite element method in ANSYS environment, and the hardness values were obtained by experiments based on the Rockwell method. The showed model fulfils the initial criteria, which provides with the basis for the assumption about its utility in establishing the casting hardness of the magnesium alloys MCMgAl12Zn1, MCMgAl6Zn1, MCMgAl3Zn1 and MCMgAl9Zn., using the finite element method within the framework of the ANSYS program. There is the correlation of the computer simulation results with the experimental outcomes. Nowadays the computer simulation is very well known, and it is based on the finite element method, what it makes possible to better comprehend the autonomy between the process parameters and selected optimal solution. The chance of applying faster and faster calculation machines and the formation of much software enables creating the more accurate models and more the adequate ones to reality.


2013 ◽  
Vol 837 ◽  
pp. 346-350
Author(s):  
Cristina Dragomir

This Finite element method is one of the most advanced calculating methods for approximation of accurate solutions to engineering problems. Optimization of grabs quay cranes is necessary because most port operators use this type of equipment for loading and unloading bulk cargo. Initial research methods applied in this study are based on observations and surveys conducted on Bocşa 16 t - 32 m mobile quay cranes of MinMetal S.A. Constanta port operator. Modeling and analysis for grabs structure optimization was made with FEMAP and NX NASTRAN - version 10.3.1 applications, which use the finite element method and finite element analysis. After calculations and analysis, the following optimizations resulted:-to increase the grabs closing force (in order to minimize the loss of cargo between jaws and to increase digging force) the lower beam weight must be reduced.-to reduce the amount of cargo drained from the grabs jaws at loading, rubber jaws barriers can be fixed or bars can be welded at grabs jaws.- if cargo has high granulation, in order to reduce grabs weight the plate of the jaw can be cropped.-cups supporting tie rods could be replaced by hydraulic cylinders.The greatest tension is located in the cups supportive arms and in the area where cups are attached to arms. Shafts tensions are larger than the grabs metal structure and are located in shafts-arms contact areas, ie support bearings. In these areas, an optimization can be made by installing ball bearings to reduce friction. The largest deformations occur in the middle area of the arms. To increase safety in operation it is necessary to change the material of the four arms supporting cups, given that deformation of 89.7 mm (~ 9 cm) combined with external factors and / or shock loads can lead to permanent deformation or even material breaks. After changing the material, the model showed that the deformations in the middle area of the arms are substantially reduced, at only 4 mm. In the contact area of the upper arms with the two bars of the upper beam, hazardous tensions may be minimized if there are inserted bearings.


2014 ◽  
Vol 626 ◽  
pp. 334-339
Author(s):  
Te Fu Huang ◽  
Hsin Yi Hsien ◽  
Yan Jia Chen

The friction holding effect and the friction reducing effect occurring during Hydraulic Deep Drawing and the pre-bulging resulting in more plastic deformation on products are applied on sheet hydro-forming. For Hydraulic Deep Drawing of a square cup, the thickness distribution and the relation between the height and the pressure of pre-bulging are simulated with SPCC steels as the specimen by the finite element method. An experimental apparatus of sheet hydro-forming has been constructed to carry out the hydraulic deep drawing experiments of square cups. Experimental thickness distribution and punch load are compared with simulation results. Good agreement was found. The flow patterns of the circular and square blanks with the condition of being firmly pressed against the punch observed from the experiments are in agreement with the predicted results.Keywords:Hydraulic Deep Drawing, sheet hydro-forming, finite element method


2021 ◽  
Vol 11 (3) ◽  
pp. 1310
Author(s):  
Merve Yavuz Erkek ◽  
Selim Erkek ◽  
Elmira Jamei ◽  
Mehdi Seyedmahmoudian ◽  
Alex Stojcevski ◽  
...  

Modal analysis provides the dynamic behavior of an object or structure, and is often undertaken using the Finite Element Method (FEM) due to its ability to deal with arbitrary geometries. This article investigates the use of Augmented Reality (AR) to provide the in situ visualization of a modal analysis for an aluminum impeller. Finite Element Analysis (FEA) software packages regularly use heat maps and shape deformation to visualize the outcomes of a given simulation. AR allows the superimposition of digital information on a view of the real-world environment, and provides the opportunity to overlay such simulation results onto real-world objects and environments. The presented modal analysis undertaken herein provides natural frequencies and the corresponding deformation of an aluminum impeller. The results indicate the ability for the design part and finite element analysis results to be viewed on the physical part. A mobile AR-FEA-based system was developed for Modal Analysis result visualization. This study offers designers and engineers a new way to visualize such simulation results.


2020 ◽  
Vol 12 (3) ◽  
pp. 313-318
Author(s):  
Andrey V. Smirnov ◽  
◽  
Iliya A. Gorbachev ◽  
Alena V. Gorbunova ◽  
Alexander S. Fionov ◽  
...  

Evaluation of the results of modeling a fractal rectenna by the finite element method, with consideration of the central 5 GHz. Directional diagrams are plotted. The simulation results are compared with a sample of a real antenna created on the basis of calculations. The possibility of using the developed fractal rectenna for collecting electromagnetic energy of new generation Wi-Fi networks is shown.


2014 ◽  
Vol 587-589 ◽  
pp. 1301-1304
Author(s):  
Zhen Yang

At present, the widening highway retaining wall is often used in engineering practice, but compare to the new highway retaining wall, there is not any highlight differences on design method to the widening highway retaining wall. The paper lays on a widening highway retaining wall in an engineer, based on the analysis of the differences between the widening highway retaining wall and the new highway retaining wall, using the finite element method for modeling and analysis of the widening highway retaining wall and the new highway retaining wall, then conclude that the soil displacements and earth pressures between the two models are significantly different, finally point out the considerations in design.


2020 ◽  
Vol 198 ◽  
pp. 02028
Author(s):  
Chang-yi Yu ◽  
Ming-yue Lu

With the increasing requirements of environmental protection, the slope reinforcement method is becoming environment-friendly. In recent years, more and more attention has been paid to the study of slope reinforcement by vegetation, and the mechanism of vegetation reinforcement has been initially established, but it is not common to study vegetation reinforcement by numerical reappearance. On the basis of reviewing the mechanism of slope reinforcement by vegetation, this paper studies the vegetation reinforcement scheme of a slope by finite element method. The results show that the finite element method can be used for vegetation reinforcement simulation, and the simulation results are combined with reality. The method in this paper provides a reference for the analysis of similar problems, and also provides a reliable analysis tool for the analysis of slope reinforced by vegetation.


Micromachines ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 22
Author(s):  
Pengzhan Liu ◽  
Qiang Tang ◽  
Songfei Su ◽  
Jie Hu ◽  
Yang Yu

The probe-type and substrate-type ultrasonic micro/nano manipulation systems have proven to be two kinds of powerful tools for manipulating micro/nanoscale materials. Numerical simulations of acoustofluidic fields in these two kinds of systems can not only be used to explain and analyze the physical mechanisms of experimental phenomena, but also provide guidelines for optimization of device parameters and working conditions. However, in-depth quantitative study and analysis of acoustofluidic fields in the two ultrasonic micro/nano manipulation systems have scarcely been reported. In this paper, based on the finite element method (FEM), we numerically investigated the two-dimensional (2D) axisymmetric acoustofluidic fields in the probe-type and substrate-type ultrasonic micro/nano manipulation systems by the perturbation method (PM) and Reynolds stress method (RSM), respectively. Through comparing the simulation results computed by the two methods and the experimental verifications, the feasibility and reasonability of the two methods in simulating the acoustofluidic fields in these two ultrasonic micro/nano manipulation systems have been validated. Moreover, the effects of device parameters and working conditions on the acoustofluidic fields are clarified by the simulation results and qualitatively verified by the experiments.


Sign in / Sign up

Export Citation Format

Share Document