Engineering Studies on Joint Bar Integrity: Part II — Finite Element Analyses

Author(s):  
Michael E. Carolan ◽  
David Y. Jeong ◽  
A. Benjamin Perlman

This paper is the second in a two-part series describing research sponsored by the Federal Railroad Administration (FRA) to study the structural integrity of joint bars. In Part I, observations from field surveys of joint bar inspections conducted on revenue service track were presented [1]. In this paper, finite element analyses are described to examine the structural performance of rail joints under various loading and tie-ballast support conditions. The primary purpose of these analyses is to help interpret and understand the observations from the field surveys. Moreover, the finite element analyses described in this paper are applied to conduct comparative studies and to assess the relative effect of various factors on the structural response of jointed rail to applied loads. Such factors include: discrete tie support (i.e. supported joint versus suspended joint with varying spans between effective ties), bolt pattern (four versus six bolts), initial bolt tension, and easement. In addition, results are shown for 90 lb rail joined with long-toe angle bars compared to 136 lb rail joined with standard short-toe joint bars.

Author(s):  
David Y. Jeong ◽  
Radim Bruzek ◽  
Ali Tajaddini

This paper is the first of a two-part series describing a research project, sponsored by the Federal Railroad Administration (FRA), to study the structural integrity of joint bars. In Part I of this series, observations from field surveys conducted on revenue service track are presented. Automated and visual inspections of rail joints were conducted to identify defective joint bars. Detailed information and measurements were collected at various joint locations. The survey team consisted of personnel from ENSCO, Inc. and Transportation Technology Center, Inc. (TTCI), working in cooperation with staff from participating railroads. Part II of this series describes the development of finite element analyses of jointed rail, which is being carried out by the Volpe National Transportation Systems Center (Volpe Center).


Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 357
Author(s):  
Ji-Won Jin ◽  
Ki-Weon Kang

A vibration-based energy harvester (VEH) utilizes vibrations originated from various structures and specifically maximizes the displacement of its moving parts, using the resonance between the frequency of external vibration loads from the structure and the natural frequency of VEH to improve power production efficiency. This study presents the procedure to evaluate the structural performance and structural integrity of VEH utilized in a railway vehicle under frequency domain. First of all, a structural performance test was performed to identify the natural frequency and assess the structural response in frequency domain. Then, the static structural analysis was carried out using FE analysis to investigate the failure critical locations (FCLs) and effect of resonance. Finally, we conducted a frequency response analysis to identify the structural response and investigate the structural integrity in frequency domain. Based on these results, the authors assessed the structural performance and integrity of VEHs in two versions.


Author(s):  
P. James ◽  
C. Madew ◽  
M. Jackson

Defect tolerance assessments are carried out to support the demonstration of structural integrity for high integrity components such as nuclear reactor pressure vessels. These assessments often consider surface-breaking defects and assess Stress Intensity Factors (SIFs) at both the surface and deepest points. This can be problematic when there is a high stress at the surface, for example due to the stress concentration at the root of a screw thread. In the past this has led to the development of complex and costly 3D finite element analyses to calculate more accurate SIFs, and still resulting in small apparent limiting defect sizes based on initiation at the surface point. Analysis has been carried out along with supporting materials testing, to demonstrate that the increased SIF at the surface point is offset by a reduction in crack-tip constraint, such that the material exhibits a higher apparent fracture toughness. This enables a more simplistic assessment which reduces the effective SIF at the surface such that only the SIF at the deepest point needs to be considered for many defects. This then leads to larger calculated limiting defect sizes. This in turn leads to a more robust demonstration of structural integrity, as the limiting defect sizes are consistent with the capability of non-destructive examination techniques. An overview of the supporting materials testing is provided in an accompanying paper. The accompanying paper details how it was not possible to demonstrate the required material response with conventional tests, such as those using shallow-notched bend specimens. Instead it was necessary to develop modified specimens in which semi-elliptical defects were introduced into a geometry which replicated the notch acuity at the root of a screw thread. These tests were used to quantify the stud materials sensitivity to constraint. Conventional three-point bend tests were also seen to confirm these values. A series of R6 constraint modified assessments have been considered to understand the benefit from including a loss of constraint, particularly when assessing the surface breaking SIF. This has necessitated a series of complex finite element analyses to define the elastic SIF as well as the elastic constraint parameter, T-Stress, T. Further verification analyses have also been performed to determine the equivalent elastic-plastic J and Q parameters. These have been used to provide guidance on how best to assess surface breaking defects within studs. This has shown that the increased perceived toughness at the surface location means that under the majority of conditions, the assessment can simply be based upon the SIF at the depth location using high constraint fracture toughness. This paper provides an overview of the process undertaken to provide simplified guidance on assessing defects within studs that allows benefit from constraint loss.


Author(s):  
Peter Grassl ◽  
Morgan Johansson ◽  
Joosef Leppänen

The structural performance of reinforced concrete relies heavily on the bond between reinforcement and concrete. In nonlinear finite element analyses, bond is either modelled by merged, also called perfect bond, or coincident with slip, also called bond-slip, approaches. Here, the performance of these two approaches for the modelling of failure of reinforced concrete was investigated using a damage-plasticity constitutive model in LS-DYNA. Firstly, the influence of element size on the response of tension-stiffening analyses with the two modelling approaches was investigated. Then, the results of the two approaches were compared for plain and fibre reinforced tension stiffening and a drop weight impact test. It was shown that only the coincident with slip approach provided mesh insensitive results. However, both approaches were capable of reproducing the overall response of the experiments in the form of load and displacements satisfactorily for the meshes used.


1999 ◽  
Author(s):  
David C. Tyrell ◽  
Eloy E. Martinez ◽  
Tomasz Wierzbicki

Abstract This paper investigates the parameters that influence the structural response of typical wide nose locomotive short hoods involved in offset collisions. This accident scenario was chosen based upon the railway collision that occurred in Selma, North Carolina, on May 16, 1994. A raised overhanging intermodal trailer on a freight car struck the front of the oncoming passenger locomotive. The objective of the study is to determine the current baseline level of crashworthiness of locomotive hood structures and the potential effectiveness of stronger corner structures. The key issues addressed are: degree of overlap, material and thickness combinations, obliquity, and crush response dependence on initial impacting speed. For a raised offset collision where the intruding body is far away from any support structures, an analytical expression is developed to predict the mean crush force. Comparisons of the results with finite element calculation are favorable. The scenarios involving obliquity, and different initial impacting speeds are investigated using non-linear large deformation finite element analyses. Key results are: obliquity has little effect on the mean crush force for short penetration distances; increased material thickness improves crashworthiness performance; initial impacting speed does not dramatically alter mean crush loads predicted for large offsets away from supports; and the distances from supporting structures have a significant effect of the predicted mode of failure and hence predicted mean crush loads. The results of the study show that it is possible to dramatically increase the crashworthiness responses of short hood structures with minor increases in weight while staying within the original design volume envelope.


2012 ◽  
Author(s):  
Evangelos Koutsolelos

In this paper, structural integrity of ship structures is discussed using Finite Element analyses. Buckling behaviors of shell structural components are investigated taking into account geometric and material nonlinearities. Recommendations are made to Naval Architects based on tools developed throughout the research.


2013 ◽  
Vol 479-480 ◽  
pp. 1144-1148 ◽  
Author(s):  
Yeong Huei Lee ◽  
Cher Siang Tan ◽  
M.Md. Tahir ◽  
Shahrin Mohammad ◽  
Poi Ngian Shek ◽  
...  

For the connection stiffness and strength prediction, Eurocode has showed an inadequacy as it will be affected by the thin-walled behaviour of cold-formed steel in actual structural performance. This paper performs a study on the connection stiffness prediction for cold-formed steel top-seat flange cleat connection with various angle thickness. Validated finite element modelling technique is applied for further advanced investigation. From the developed finite element models, it was realized that Eurocode has overestimated by the analytical stiffness prediction using component method for the studied connection which reduces the structural integrity in the design stage. A new proposal on connection stiffness prediction with influence of angle thickness for cold-formed steel top-seat flange cleat connection is presented to assist practicing engineers to design the cold-formed connection in light steel framing.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Luigi Biolzi ◽  
Antonio Bonati ◽  
Sara Cattaneo

The structural performance of cantilevered laminated glass plates for different glass thicknesses and interlayers is considered in this paper. Heat-strengthened and tempered glass plies and two different interlayer films were utilized. The response of laminated glass specimens is then evaluated under low-velocity hard and semirigid impacts. Experimental findings were simulated and discussed by means of finite element analyses. In particular, this discussion includes the evaluation of the influence that the fixed edge clamping technique (number of clamps, their size, and their stiffness) has on the stress distribution in the specimens.


Author(s):  
Joseph Montalvo ◽  
Alexis Trevino ◽  
Arturo A. Fuentes ◽  
Constantine M. Tarawneh

This paper presents a detailed study of the structural integrity of conventional and modified railroad bearing adapters for onboard monitoring applications. Freight railcars rely heavily on weigh bridges and stations to determine cargo load. As a consequence, most load measurements are limited to certain physical railroad locations. This limitation provided an opportunity for an optimized sensor that could potentially deliver significant insight on bearing condition monitoring as well as load information. Bearing adapter modifications (e.g. cut-outs) were necessary to house the sensor and, thus, it is imperative to determine the reliability of the modified railroad bearing adapter, which will be used for onboard health monitoring applications. To this end, this study quantifies the impact of the proposed modifications on the adapter structural integrity through a series of experiments and finite element analyses. The commercial software Algor 20.3TM is used to conduct the stress finite element analyses. Different loading scenarios are simulated with the purpose of obtaining the conventional and modified bearing adapter stresses during normal and abnormal operating conditions. This information is then used to estimate the lifetime of these bearing adapters. Furthermore, this paper presents an experimentally validated finite element model which can be used to attain stress distribution maps of these bearing adapters in different service conditions. The maps are also useful for identifying areas of interest for an eventual inspection of conventional or modified railroad bearing adapters in the field.


Author(s):  
Peter Grassl ◽  
Morgan Johansson ◽  
Joosef Leppänen

The structural performance of reinforced concrete relies heavily on the bond between reinforcement and concrete. In nonlinear finite element analyses, bond is either modelled by merged, also called perfect bond, or coincident with slip, also called bond-slip, approaches. Here, the performance of these two approaches for the modelling of failure of reinforced concrete was investigated using a damage-plasticity constitutive model in LS-DYNA. Firstly, the influence of element size on the response of tension-stiffening analyses with the two modelling approaches was investigated. Then, the results of the two approaches were compared for plain and fibre reinforced tension stiffening and a drop weight impact test. It was shown that only the coincident with slip approach provided mesh insensitive results. However, both approaches were capable of reproducing the overall response of the experiments in the form of load and displacements satisfactorily for the meshes used.


Sign in / Sign up

Export Citation Format

Share Document