Fatigue Life Estimation of Modified Railroad Bearing Adapters for Onboard Monitoring Applications

Author(s):  
Alexis Trevino ◽  
Arturo A. Fuentes ◽  
Constantine M. Tarawneh ◽  
Joseph Montalvo

This paper presents a study of the fatigue life (i.e. number of stress cycles before failure) of Class K cast iron conventional and modified railroad bearing adapters for onboard monitoring applications under different operational conditions based on experimentally validated Finite Element Analysis (FEA) stress results. Currently, freight railcars rely heavily on wayside hot-box detectors (HBDs) at strategic intervals to record bearing cup temperatures as the train passes at specified velocities. Hence, most temperature measurements are limited to certain physical railroad locations. This limitation gave way for an optimized sensor that could potentially deliver significant insight on continuous bearing temperature conditions. Bearing adapter modifications (i.e. cut-outs) were required to house the developed temperature sensor which will be used for onboard monitoring applications. Therefore, it is necessary to determine the reliability of the modified railroad bearing adapter. Previous work done at the University Transportation Center for Railway Safety (UTCRS) led to the development of finite element model with experimentally validated boundary conditions which was utilized to obtain stress distribution maps of conventional and modified railroad bearing adapters under different service conditions. These maps were useful for identifying areas of interest for an eventual inspection of railroad bearing adapters in the field. Upon further examination of the previously acquired results, it was determined that one possible mode of adapter failure would be by fatigue due to the cyclic loading and the range of stresses in the railroad bearing adapters. In this study, the authors experimentally validate the FEA stress results and investigate the fatigue life of the adapters under different extreme case scenarios for the bearing adapters including the effect of a railroad flat wheel. In this case, the flat wheel translates into a periodic impact load on the bearing adapter. The Stress-Life approach is used to calculate the life of the railroad bearing adapters made out of cast iron and subjected to cyclic loading. From the known material properties of the adapter (cast iron), the operational life is estimated with a mathematical relationship. The Goodman correction factor is used in these life prediction calculations in order to take into account the mean stresses experienced by these adapters. The work shows that the adapters have infinite life in all studied cases.

2021 ◽  
Vol 11 (13) ◽  
pp. 6094
Author(s):  
Hubdar Hussain ◽  
Xiangyu Gao ◽  
Anqi Shi

In this study, detailed finite element analysis was conducted to examine the seismic performance of square and circular hollow steel braces under axial cyclic loading. Finite element models of braces were constructed using ABAQUS finite element analysis (FEA) software and validated with experimental results from previous papers to expand the specimen’s matrix. The influences of cross-section shape, slenderness ratio, and width/diameter-to-thickness ratio on hysteretic behavior and compressive-tensile strength degradation were studied. Simulation results of parametric studies show that both square and circular hollow braces have a better cyclic performance with smaller slenderness and width/diameter-to-thickness ratios, and their compressive-tensile resistances ratio significantly decreases from cycle to cycle after the occurrence of the global buckling of braces.


2019 ◽  
Vol 893 ◽  
pp. 1-5 ◽  
Author(s):  
Eui Soo Kim

Pressure vessels are subjected to repeated loads during use and charging, which can causefine physical damage even in the elastic region. If the load is repeated under stress conditions belowthe yield strength, internal damage accumulates. Fatigue life evaluation of the structure of thepressure vessel using finite element analysis (FEA) is used to evaluate the life cycle of the structuraldesign based on finite element method (FEM) technology. This technique is more advanced thanfatigue life prediction that uses relational equations. This study describes fatigue analysis to predictthe fatigue life of a pressure vessel using stress data obtained from FEA. The life prediction results areuseful for improving the component design at a very early development stage. The fatigue life of thepressure vessel is calculated for each node on the model, and cumulative damage theory is used tocalculate the fatigue life. Then, the fatigue life is calculated from this information using the FEanalysis software ADINA and the fatigue life calculation program WINLIFE.


2001 ◽  
Vol 42 (5) ◽  
pp. 809-813 ◽  
Author(s):  
Young-Eui Shin ◽  
Kyung-Woo Lee ◽  
Kyong-Ho Chang ◽  
Seung-Boo Jung ◽  
Jae Pil Jung

2000 ◽  
Vol 123 (1) ◽  
pp. 150-154
Author(s):  
John H. Underwood ◽  
Michael J. Glennon

Laboratory fatigue life results are summarized from several test series of high-strength steel cannon breech closure assemblies pressurized by rapid application of hydraulic oil. The tests were performed to determine safe fatigue lives of high-pressure components at the breech end of the cannon and breech assembly. Careful reanalysis of the fatigue life tests provides data for stress and fatigue life models for breech components, over the following ranges of key parameters: 380–745 MPa cyclic internal pressure; 100–160 mm bore diameter cannon pressure vessels; 1040–1170 MPa yield strength A723 steel; no residual stress, shot peen residual stress, overload residual stress. Modeling of applied and residual stresses at the location of the fatigue failure site is performed by elastic-plastic finite element analysis using ABAQUS and by solid mechanics analysis. Shot peen and overload residual stresses are modeled by superposing typical or calculated residual stress distributions on the applied stresses. Overload residual stresses are obtained directly from the finite element model of the breech, with the breech overload applied to the model in the same way as with actual components. Modeling of the fatigue life of the components is based on the fatigue intensity factor concept of Underwood and Parker, a fracture mechanics description of life that accounts for residual stresses, material yield strength and initial defect size. The fatigue life model describes six test conditions in a stress versus life plot with an R2 correlation of 0.94, and shows significantly lower correlation when known variations in yield strength, stress concentration factor, or residual stress are not included in the model input, thus demonstrating the model sensitivity to these variables.


2005 ◽  
Author(s):  
Bill Shi ◽  
Donald Liu ◽  
Christopher Wiernicki

The emerging global economic needs are driving the designs for the next generation of ocean going vessels. Current ultra-large container carrier (10,000 TEU plus) designs are considerably larger and more complex than any currently in service. Proper and rational classification assessment requires that first principles based direct calculation methods be used to augment the standard classification review. The design philosophy behind the ABS Dynamic Loading Approach enables comprehensive identification of potential failure mechanisms. The scope of the necessary engineering assessment encompass full-ship finite element analysis under non-linear sea loads, spectral fatigue analysis, finite element lashing analysis, free and forced vibration analysis, and transient and impact load analysis. This paper describes key aspects of the DLA design philosophy such as non-linear sea loads, load combinations, various applications derived from full-ship finite element analysis. Several examples are given to highlight some critical failure mechanisms to be considered for ultra-large container carriers.


2019 ◽  
Vol 17 (1) ◽  
pp. 25-40 ◽  
Author(s):  
Hafida Kahoul ◽  
Samira Belhour ◽  
Ahmed Bellaouar ◽  
Jean Paul Dron

Purpose This paper aims to present the fatigue life behaviour of upper arm suspension. The main objectives are to predict the fatigue life of the component and to identify the critical location. In this analysis, three aluminium alloys were used for the suspension, and their fatigue life was compared to select the suitable material for the suspension arm. Design/methodology/approach CAD model was prepared using Solid Works software, and finite element analysis was done using ANSYS 14.0 software by importing the Parasolid file to ANSYS. The model is subjected to loading and boundary conditions; the authors consider a vertical force with constant amplitude applied at the bushing that connected to the tire, the others two bushing that connected to the body of the car are constraint. Tetrahedral elements given enhanced results as compared to other types of elements; therefore, the elements (TET 10) are used. The maximum principal stress was considered in the linear static analysis, and fatigue analysis was done using strain life approach. Findings Life and damage are evaluated and the critical location was considered at node 63,754. From the fatigue analysis, aluminium alloys 7175-T73 (Al 90%-Zn 5.6%-Mg 2.5% -… …) and 2014-T6 (Al 93.5%-Cu 4.4%-Mg 0.5%… …) present a similar behaviour as compared to 6061-T6 (Al 97.9%-Mg 1.0%-Si 0.6%… … .); in this case of study, these lather are considered to be the materials of choice to manufacture the suspension arms; but 7175-T73 aluminium alloys remain the material with a better resistance to fatigue. Originality/value By the finite element analysis method and assistance of ANSYS software, it is able to analyse the different car components from varied aspects such as fatigue, and consequently save time and cost. For further research, the experimental works under controlled laboratory conditions should be done to determine the validation of the result from the software analysis.


2008 ◽  
Vol 575-578 ◽  
pp. 1461-1466
Author(s):  
Byeong Choon Goo ◽  
Jung Won Seo

Railcar wheels and axles belong to the most critical components in railway vehicles. The service conditions of railway vehicles have been more severe in recent years due to speed-up. Therefore, a more precise evaluation of railcar wheel life and safety has been requested. Wheel/rail contact fatigue and thermal cracks due to braking are two major mechanisms of the railcar wheel failure. One of the main sources influencing on the contact zone failure is residual stress. The residual stress in wheels formed during heat treatment in manufacturing changes in the process of braking. Thus the fatigue life of railcar wheels should be estimated by considering both thermal stress and rolling contact. Also, the effect of residual stress variation due to manufacturing process and braking process should be included in simulating contact fatigue behavior. In this paper, an evaluation procedure for the contact fatigue life of railcar wheels considering the effects of residual stresses due to heat treatment, braking and repeated contact load is proposed. And the cyclic stressstrain history for fatigue analysis is simulated by finite element analysis for the moving contact load.


Sign in / Sign up

Export Citation Format

Share Document