Study on Ballast Particle Movement at Different Locations Beneath Crosstie Using “SmartRock”

Author(s):  
Shushu Liu ◽  
Hai Huang ◽  
Tong Qiu ◽  
Yin Gao

Ballast compaction and particle rearrangement cause ballast to rotate and move vertically and horizontally. Ballast movement, including translation and rotation, has a significant effect on track performance. Large movement of ballast particles leads to track geometry roughness, e.g., hanging ties, and thus increases potential of damage and deterioration to rails, ties and fastening components. This study investigated ballast particle movement at different locations beneath a crosstie. In the paper, a wireless device — “SmartRock” was utilized to monitor ballast movement under cyclic loading in laboratory tests. The SmartRock has a shape of a realistic ballast particle. Inside the SmartRock was imbedded a tri-axial accelerometer, tri-axial gyroscope, and tri-axial magnetometer with 9 degrees of freedom so that particle translation, rotation and orientation can be interpreted, relatively. The real-time measurements were recorded by the SmartRock and then sent to a computer via Bluetooth. In the laboratory tests, a ballast box was constructed. In the ballast box, a half section of a typical railroad track was constructed. Five hundred cyclic load repetitions were applied on the top of the rail. Translational and rotational accelerations of the particle were recorded by the “SmartRock”. Three ballast box tests were conducted. Two SmartRocks were placed beneath the middle of tie and the edge of tie, respectively but at different depths during each test — right under the tie, 12 cm beneath the tie and 25 cm beneath the tie. The results indicated that (1) ballast particles had translational as well as rotational modes under cyclic loading; (2) ballast particles had rotation together with horizontal translation; (3) particle rotation were higher beneath the edge of tie than those beneath the middle of tie; (4) Ballast movement were significantly reduced with depth. The paper also further confirmed that the SmartRock was capable of recording real-time translational and rotational accelerations, which would not have altered the motions of surrounding ballast particles due to its realistic shape of a particle, hence, provided a new means to monitor ballast particle movement in railroad engineering.

Author(s):  
Afef Hfaiedh ◽  
Ahmed Chemori ◽  
Afef Abdelkrim

In this paper, the control problem of a class I of underactuated mechanical systems (UMSs) is addressed. The considered class includes nonlinear UMSs with two degrees of freedom and one control input. Firstly, we propose the design of a robust integral of the sign of the error (RISE) control law, adequate for this special class. Based on a change of coordinates, the dynamics is transformed into a strict-feedback (SF) form. A Lyapunov-based technique is then employed to prove the asymptotic stability of the resulting closed-loop system. Numerical simulation results show the robustness and performance of the original RISE toward parametric uncertainties and disturbance rejection. A comparative study with a conventional sliding mode control reveals a significant robustness improvement with the proposed original RISE controller. However, in real-time experiments, the amplification of the measurement noise is a major problem. It has an impact on the behaviour of the motor and reduces the performance of the system. To deal with this issue, we propose to estimate the velocity using the robust Levant differentiator instead of the numerical derivative. Real-time experiments were performed on the testbed of the inertia wheel inverted pendulum to demonstrate the relevance of the proposed observer-based RISE control scheme. The obtained real-time experimental results and the obtained evaluation indices show clearly a better performance of the proposed observer-based RISE approach compared to the sliding mode and the original RISE controllers.


2021 ◽  
Vol 11 (5) ◽  
pp. 2346
Author(s):  
Alessandro Tringali ◽  
Silvio Cocuzza

The minimization of energy consumption is of the utmost importance in space robotics. For redundant manipulators tracking a desired end-effector trajectory, most of the proposed solutions are based on locally optimal inverse kinematics methods. On the one hand, these methods are suitable for real-time implementation; nevertheless, on the other hand, they often provide solutions quite far from the globally optimal one and, moreover, are prone to singularities. In this paper, a novel inverse kinematics method for redundant manipulators is presented, which overcomes the above mentioned issues and is suitable for real-time implementation. The proposed method is based on the optimization of the kinetic energy integral on a limited subset of future end-effector path points, making the manipulator joints to move in the direction of minimum kinetic energy. The proposed method is tested by simulation of a three degrees of freedom (DOF) planar manipulator in a number of test cases, and its performance is compared to the classical pseudoinverse solution and to a global optimal method. The proposed method outperforms the pseudoinverse-based one and proves to be able to avoid singularities. Furthermore, it provides a solution very close to the global optimal one with a much lower computational time, which is compatible for real-time implementation.


Author(s):  
Arata Yamamoto

Abstract We study the quantum simulation of Z2 lattice gauge theory in 2+1 dimensions. The dual variable formulation, the so-called Wegner duality, is utilized for reducing redundant gauge degrees of freedom. The problem of artificial charge unconservation is resolved for any charge distribution. As a demonstration, we simulate the real-time evolution of the system with two static electric charges, i.e., with two temporal Wilson lines. Some results obtained by the simulator (with no hardware noise) and the real device (with sizable hardware noise) of a quantum computer are shown.


2019 ◽  
Vol 21 (4) ◽  
Author(s):  
Nishant Kumar ◽  
Bettina Suhr ◽  
Stefan Marschnig ◽  
Peter Dietmaier ◽  
Christof Marte ◽  
...  

Abstract Ballasted tracks are the commonly used railway track systems with constant demands for reducing maintenance cost and improved performance. Elastic layers are increasingly used for improving ballasted tracks. In order to better understand the effects of elastic layers, physical understanding at the ballast particle level is crucial. Here, discrete element method (DEM) is used to investigate the effects of elastic layers – under sleeper pad ($$\text {USP}$$USP) at the sleeper/ballast interface and under ballast mat ($$\text {UBM}$$UBM) at the ballast/bottom interface – on micro-mechanical behavior of railway ballast. In the DEM model, the Conical Damage Model (CDM) is used for contact modelling. This model was calibrated in Suhr et al. (Granul Matter 20(4):70, 2018) for the simulation of two different types of ballast. The CDM model accounts for particle edge breakage, which is an important phenomenon especially at the early stage of a tamping cycle, and thus essential, when investigating the impact of elastic layers in the ballast bed. DEM results confirm that during cyclic loading, $$\text {USP}$$USP reduces the edge breakage at the sleeper/ballast interface. On the other hand, $$\text {UBM}$$UBM shows higher particle movement throughout the ballast bed. Both the edge breakage and particle movement in the ballast bed are found to influence the sleeper settlement. Micro-mechanical investigations show that the force chain in deeper regions of the ballast bed is less affected by $$\text {USP}$$USP for the two types of ballast. Conversely, dense lateral forces near to the box bottom were seen with $$\text {UBM}$$UBM. The findings are in good (qualitative) agreement with the experimental observations. Thus, DEM simulations can aid to better understand the micro-macro phenomena for railway ballast. This can help to improve the track components and track design based on simulation models taking into account the physical behavior of ballast. Graphical Abstract


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 750
Author(s):  
Wenkang Wan ◽  
Jingan Feng ◽  
Bao Song ◽  
Xinxin Li

Accurate and real-time acquisition of vehicle state parameters is key to improving the performance of vehicle control systems. To improve the accuracy of state parameter estimation for distributed drive electric vehicles, an unscented Kalman filter (UKF) algorithm combined with the Huber method is proposed. In this paper, we introduce the nonlinear modified Dugoff tire model, build a nonlinear three-degrees-of-freedom time-varying parametric vehicle dynamics model, and extend the vehicle mass, the height of the center of gravity, and the yaw moment of inertia, which are significantly influenced by the driving state, into the vehicle state vector. The vehicle state parameter observer was designed using an unscented Kalman filter framework. The Huber cost function was introduced to correct the measured noise and state covariance in real-time to improve the robustness of the observer. The simulation verification of a double-lane change and straight-line driving conditions at constant speed was carried out using the Simulink/Carsim platform. The results show that observation using the Huber-based robust unscented Kalman filter (HRUKF) more realistically reflects the vehicle state in real-time, effectively suppresses the influence of abnormal error and noise, and obtains high observation accuracy.


2001 ◽  
Author(s):  
Tamás Kalmár-Nagy ◽  
Pritam Ganguly ◽  
Raffaello D’Andrea

Abstract In this paper, we discuss an innovative method of generating near-optimal trajectories for a robot with omni-directional drive capabilities, taking into account the dynamics of the actuators and the system. The relaxation of optimality results in immense computational savings, critical in dynamic environments. In particular, a decoupling strategy for each of the three degrees of freedom of the vehicle is presented, along with a method for coordinating the degrees of freedom. A nearly optimal trajectory for the vehicle can typically be calculated in less than 1000 floating point operations, which makes it attractive for real-time control in dynamic and uncertain environments.


Robotica ◽  
2018 ◽  
Vol 37 (1) ◽  
pp. 109-140 ◽  
Author(s):  
V. Janardhan ◽  
R. Prasanth Kumar

SUMMARYDitch crossing is one of the essential capabilities required for a biped robot in disaster management and search and rescue operations. Present work focuses on crossing a wide ditch with landing uncertainties by an under-actuated planar biped robot with five degrees of freedom. We consider a ditch as wide for a robot when the ankle to ankle stretch required to cross it is at least equal to the leg length of the robot. Since locomotion in uncertain environments requires real-time planning, in this paper, we present a new approach for generating real-time joint trajectories using control constraints not explicitly dependent on time, considering impact, dynamic balance, and friction. As part of the approach, we introduce a novel concept called the point of feasibility for bringing the biped robot to complete rest at the end of ditch crossing. We present a study on the influence of initial posture on landing impact and net energy consumption. Through simulations, we found the best initial postures to efficiently cross a wide ditch of width 1.05 m, with less impact and without singularities. Finally, we demonstrate the advantage of the proposed approach to cross a wide ditch when the surface friction is not same on both sides of the ditch.


2001 ◽  
Vol 43 (1) ◽  
pp. 269-276 ◽  
Author(s):  
N. Puznava ◽  
M. Payraudeau ◽  
D. Thornberg

The aim of this article is to present a new biological aerated filter (BAF) for nitrogen removal based on simultaneous nitrification and denitrification. Contrary to the systems which integrate both an aerated and a non-aerated zone to allow complete nitrogen removal in one compact or two different units (pre-denitrification and nitrification), this upflow BAF system is based on the principle of simultaneous nitrification and denitrification since the filter is completely aerated. The denitrification process is possible due to the diffusion effect which dominates biofilm processes. The real time aeration control allows us to maintain a low dissolved oxygen value (0.5 to 3 mg O2/l). In this case, the biofilm will not be fully (or less) penetrated with oxygen and denitrification will be carried out in a large part of the biofilm. Therefore, nitrification and denitrification is running simultaneously in different depths of the biofilm. By using 50% less air this BAF gave the same results (less than 20mg TN/l) on pilot plant as a classical nitrification and denitrification BAF (Toettrup et al., 1994). Less recirculation was necessary to achieve the same denitrification.


2021 ◽  
Vol 143 (7) ◽  
Author(s):  
Randall T. Fawcett ◽  
Abhishek Pandala ◽  
Jeeseop Kim ◽  
Kaveh Akbari Hamed

Abstract The primary goal of this paper is to develop a formal foundation to design nonlinear feedback control algorithms that intrinsically couple legged robots with bio-inspired tails for robust locomotion in the presence of external disturbances. We present a hierarchical control scheme in which a high-level and real-time path planner, based on an event-based model predictive control (MPC), computes the optimal motion of the center of mass (COM) and tail trajectories. The MPC framework is developed for an innovative reduced-order linear inverted pendulum (LIP) model that is augmented with the tail dynamics. At the lower level of the control scheme, a nonlinear controller is implemented through the use of quadratic programming (QP) and virtual constraints to force the full-order dynamical model to track the prescribed optimal trajectories of the COM and tail while maintaining feasible ground reaction forces at the leg ends. The potential of the analytical results is numerically verified on a full-order simulation model of a quadrupedal robot augmented with a tail with a total of 20 degrees-of-freedom. The numerical studies demonstrate that the proposed control scheme coupled with the tail dynamics can significantly reduce the effect of external disturbances during quadrupedal locomotion.


Sign in / Sign up

Export Citation Format

Share Document