Numerical Simulation of Gaseous Flow Characterstics in Microchannels

Author(s):  
Tiantian Zhang ◽  
Li Jia

Flow characteristics of nitrogen flows in the three different microchannels (hydraulic diameter Dh ranging 30–3000 μm) have been investigated numerically considering of the effect of compressibility and viscosity heating. It indicated that pressure drop at inlet and outlet is nonlinear with Reynolds number. Transition Re is as low as about 1200 for microchannels with Dh = 300 μm. To incompressible flow, Dh, has no effect on friction factor f. However, L/Dh has great effect on f, and f increases with the decrease of L/Dh. It was found from numerical results that fRe can be expressed as a function of Mach number. By compared with the experimental results, the function has been proved right. When pressure drop at inlet and outlet is over 10kPa, the effect of compressibility could not be neglected. This implies that the effect of compressibility in microchannels can be described better by pressure drop at inlet and outlet than Ma, which is in contrast to the practice in the conventional scale. At last, the viscosity heating effect was simply analyzed. It was found that the effect of viscosity heating increases with the increase of Re and decrease of size.

Author(s):  
Yutaka Asako ◽  
Kenji Nakayama

The product of friction factor and Reynolds number (f·Re) of gaseous flow in the quasi-fully developed region of a micro-tube was obtained experimentally and numerically. The tube cutting method was adopted to obtain the pressure distribution along the tube. The fused silica tubes whose nominal diameters were 100 and 150 μm, were used. Two-dimensional compressible momentum and energy equations were solved to obtain the flow characteristics in micro-tubes. The numerical methodology is based on the Arbitrary-Lagrangian-Eulerian (ALE) method. The both results agree well and it was found that (f·Re) is a function of Mach number.


2010 ◽  
Vol 132 (7) ◽  
Author(s):  
Henrique Stel ◽  
Rigoberto E. M. Morales ◽  
Admilson T. Franco ◽  
Silvio L. M. Junqueira ◽  
Raul H. Erthal ◽  
...  

This article describes a numerical and experimental investigation of turbulent flow in pipes with periodic “d-type” corrugations. Four geometric configurations of d-type corrugated surfaces with different groove heights and lengths are evaluated, and calculations for Reynolds numbers ranging from 5000 to 100,000 are performed. The numerical analysis is carried out using computational fluid dynamics, and two turbulence models are considered: the two-equation, low-Reynolds-number Chen–Kim k-ε turbulence model, for which several flow properties such as friction factor, Reynolds stress, and turbulence kinetic energy are computed, and the algebraic LVEL model, used only to compute the friction factors and a velocity magnitude profile for comparison. An experimental loop is designed to perform pressure-drop measurements of turbulent water flow in corrugated pipes for the different geometric configurations. Pressure-drop values are correlated with the friction factor to validate the numerical results. These show that, in general, the magnitudes of all the flow quantities analyzed increase near the corrugated wall and that this increase tends to be more significant for higher Reynolds numbers as well as for larger grooves. According to previous studies, these results may be related to enhanced momentum transfer between the groove and core flow as the Reynolds number and groove length increase. Numerical friction factors for both the Chen–Kim k-ε and LVEL turbulence models show good agreement with the experimental measurements.


Author(s):  
Jian Pu ◽  
Zhaoqing Ke ◽  
Jianhua Wang ◽  
Lei Wang ◽  
Hongde You

This paper presents an experimental investigation on the characteristics of the fluid flow within an entire coolant channel of a low pressure (LP) turbine blade. The serpentine channel, which keeps realistic blade geometry, consists of three passes connected by a 180° sharp bend and a semi-round bend, 2 tip exits and 25 trailing edge exits. The mean velocity fields within several typical cross sections were captured using a particle image velocimetry (PIV) system. Pressure and flow rate at each exit were determined through the measurements of local static pressure and volume flow rate. To optimize the design of LP turbine blade coolant channels, the effect of tip ejection ratio (ER) from 180° sharp bend on the flow characteristics in the coolant channel were experimentally investigated at a series of inlet Reynolds numbers from 25,000 to 50,000. A complex flow pattern, which is different from the previous investigations conducted by a simplified square or rectangular two-pass U-channel, is exhibited from the PIV results. This experimental investigation indicated that: a) in the main flow direction, the regions of separation bubble and flow impingement increase in size with a decrease of the ER; b) the shape, intensity and position of the secondary vortices are changed by the ER; c) the mass flow ratio of each exit to inlet is not sensitive to the inlet Reynolds number; d) the increase of the ER reduces the mass flow ratio through each trailing edge exit to the extent of about 23–28% of the ER = 0 reference under the condition that the tip exit located at 180° bend is full open; e) the pressure drop through the entire coolant channel decreases with an increase in the ER and inlet Reynolds number, and a reduction about 35–40% of the non-dimensional pressure drop is observed at different inlet Reynolds numbers, under the condition that the tip exit located at 180° bend is full open.


Author(s):  
Sam Ghazi-Hesami ◽  
Dylan Wise ◽  
Keith Taylor ◽  
Peter Ireland ◽  
Étienne Robert

Abstract Turbulators are a promising avenue to enhance heat transfer in a wide variety of applications. An experimental and numerical investigation of heat transfer and pressure drop of a broken V (chevron) turbulator is presented at Reynolds numbers ranging from approximately 300,000 to 900,000 in a rectangular channel with an aspect ratio (width/height) of 1.29. The rib height is 3% of the channel hydraulic diameter while the rib spacing to rib height ratio is fixed at 10. Heat transfer measurements are performed on the flat surface between ribs using transient liquid crystal thermography. The experimental results reveal a significant increase of the heat transfer and friction factor of the ribbed surface compared to a smooth channel. Both parameters increase with Reynolds number, with a heat transfer enhancement ratio of up to 2.15 (relative to a smooth channel) and a friction factor ratio of up to 6.32 over the investigated Reynolds number range. Complementary CFD RANS (Reynolds-Averaged Navier-Stokes) simulations are performed with the κ-ω SST turbulence model in ANSYS Fluent® 17.1, and the numerical estimates are compared against the experimental data. The results reveal that the discrepancy between the experimentally measured area averaged Nusselt number and the numerical estimates increases from approximately 3% to 13% with increasing Reynolds number from 339,000 to 917,000. The numerical estimates indicate turbulators enhance heat transfer by interrupting the boundary layer as well as increasing near surface turbulent kinetic energy and mixing.


2018 ◽  
Vol 857 ◽  
pp. 878-906 ◽  
Author(s):  
T. Nagata ◽  
T. Nonomura ◽  
S. Takahashi ◽  
Y. Mizuno ◽  
K. Fukuda

In this study, direct numerical simulation of the flow around a rotating sphere at high Mach and low Reynolds numbers is conducted to investigate the effects of rotation rate and Mach number upon aerodynamic force coefficients and wake structures. The simulation is carried out by solving the three-dimensional compressible Navier–Stokes equations. A free-stream Reynolds number (based on the free-stream velocity, density and viscosity coefficient and the diameter of the sphere) is set to be between 100 and 300, the free-stream Mach number is set to be between 0.2 and 2.0, and the dimensionless rotation rate defined by the ratio of the free-stream and surface velocities above the equator is set between 0.0 and 1.0. Thus, we have clarified the following points: (1) as free-stream Mach number increased, the increment of the lift coefficient due to rotation was reduced; (2) under subsonic conditions, the drag coefficient increased with increase of the rotation rate, whereas under supersonic conditions, the increment of the drag coefficient was reduced with increasing Mach number; and (3) the mode of the wake structure becomes low-Reynolds-number-like as the Mach number is increased.


Author(s):  
Elling Sletfjerding ◽  
Jon Steinar Gudmundsson

Abstract Pressure drop experiments on natural gas flow in 150 mm pipes at 80 to 120 bar pressure and high Reynolds number were carried out for pipes smooth to rough surfaces. The roughness was measured with an accurate stylus instrument and analyzed using fractal methods. Using a similar approach to that of Nikuradse the measured friction factor was related to the measured roughness values. Taking the value of the relative roughness and dividing it by the slope of the power spectrum of the measured roughness, a greatly improved fit with the measured friction factor was obtained. Indeed, a new friction factor correlation was obtained, but now formulated in terms of direct measurement of roughness.


2013 ◽  
Vol 291-294 ◽  
pp. 791-794
Author(s):  
Yan Liu ◽  
Shao Feng Zhang ◽  
Jiang Tao Wang

In order to obtain the pressure drop of the horizontal liquid-solid circulation fluidization bed with Kenics static mixers, experiments were carried out in four Kenics static mixers with different aspect ratio of mixing element(AR) over a range of 30000 to 51000 to get pressure drop data. Dimension analysis revealed that the pressure drop characteristic of the Kenics static mixer can be described by three dimensionless parameters, such as the friction factor, Reynolds number, and aspect ratio of mixing element. According to the experiment data, a new dimensionless pressure drop correlation was developed. The results indicate that the value of Cf becomes constant and has no correlation with the value of Re in fixed AR. The value of Cf was increased with the increase of AR.


1993 ◽  
Vol 115 (2) ◽  
pp. 239-242 ◽  
Author(s):  
E. Brundrett

A new pressure loss correlation predicts flow through screens for the wire Reynolds number range of 10−4 to 104 using the conventional orthogonal porosity and a function of wire Reynolds number. The correlation is extended by the conventional cosine law to include flow that is not perpendicular to the screen. The importance of careful specification of wire diameter for accurate predictions of porosity is examined. The effective porosity is influenced by the shape of the woven wires, by any local damage, and by screen tension.


2019 ◽  
Vol 14 (1) ◽  
pp. 105-115 ◽  
Author(s):  
Makoto Shimomura ◽  
Raditya Putra ◽  
Niken Angga Rukmini ◽  
Sulistiyani ◽  
◽  
...  

A pyroclastic flow is one of the most dangerous hazardous phenomena. To escape a pyroclastic flow, the influenceable area must be evacuated before the flow occurs. Therefore, to predict the inundation area of a pyroclastic flow is important, and numerical simulation is a helpful tool in this prediction. This study simulated a pyroclastic flow by reproducing the pyroclastic flow of Mt. Merapi that occurred in 2010. However, necessary detailed information of the flow to conduct the simulation, such as total volume and the property of the pyroclastic flow material, flow rate, etc., were not available. Therefore, 20 simulations were conducted, varying the important conditions, such as the volume of pyroclastic material, inter-granular friction factor, and duration of the flow. The results showed that the volume of the pyroclastic material and inter-granular friction factor strongly control the flow characteristics. However, the friction factor does not result in a wide range of values; therefore, volume is the most influencing factor. The most suitable condition is a total volume of pyroclastic material of 30 × 106m3, a 5 min duration of flow, and a 0.6 friction factor.


Sign in / Sign up

Export Citation Format

Share Document