Effect of Compressibility on Gaseous Flows in a Micro-Tube

Author(s):  
Yutaka Asako ◽  
Kenji Nakayama

The product of friction factor and Reynolds number (f·Re) of gaseous flow in the quasi-fully developed region of a micro-tube was obtained experimentally and numerically. The tube cutting method was adopted to obtain the pressure distribution along the tube. The fused silica tubes whose nominal diameters were 100 and 150 μm, were used. Two-dimensional compressible momentum and energy equations were solved to obtain the flow characteristics in micro-tubes. The numerical methodology is based on the Arbitrary-Lagrangian-Eulerian (ALE) method. The both results agree well and it was found that (f·Re) is a function of Mach number.

Author(s):  
Toru Yamada ◽  
Yutaka Asako

Two-dimensional compressible momentum and energy equations are solved on gaseous flows around a micro-scaled gas turbine blade (GE-E3) whose axial chord ranges from 86.1μm to 86.1mm to obtain the scale effect. The numerical methodology is based on Arbitrary-Lagrangian-Eulerian (ALE) method. The flow is assumed to be ‘no heat conduction’ flow. The computations were performed for gaseous flow around a single blade with periodical conditions imposed along the boundaries in the pitch directions. The study is focused on the effect of the scale of the turbine blade on the performance. The predicted pressure distribution on both the pressure and suction sides of the conventional sized blade and both the inlet and outlet Mach numbers were compared with available experimental data to verify the code and the scale effect was discussed.


Author(s):  
Y. Asako ◽  
D. Kawashima ◽  
T. Yamada ◽  
C. Hong

The Mach number and pressure on the outlet plane of a straight micro-tube were investigated numerically for both laminar and turbulent flow cases. The numerical methodology is based on the Arbitrary-Lagrangian-Eulerian (ALE) method. The LB1 turbulence model was used for the turbulent flow case. The compressible momentum and energy equations with the assumption of the ideal gas were solved. The computational domain is extended to the downstream region from the micro-tube outlet. The back pressure was given to the outside of the downstream region. The computations were performed for a tube whose diameter ranges from 50 to 500 μm. The average Mach number on the outlet plane of the fully under-expanded flow depends on the tube diameter and ranges from 1.16 to 1.25. The flow characteristics of the under-expanded gas flow in a straight micro-tube were revealed.


Author(s):  
Y Horii ◽  
Y Asako ◽  
C Hong ◽  
J Lee

The pressure loss of gaseous flow at a micro-tube outlet was investigated numerically. The numerical methodology is based on the arbitrary Lagrangian—Eulerian (ALE) method. Axis-symmetric compressible momentum and energy equations are solved to obtain the pressure loss coefficient of gaseous flow at a micro-tube outlet. Computed tube diameters are 50, 100, and 150μm. The stagnation pressure of upper stream of the tube is chosen in such a way that the Mach number at the tube outlet ranges from 0.1 to 1.2. The ambient (back) pressure is fixed at the atmospheric pressure. The pressure loss coefficients are compared with available experimental data for a conventionally sized tube. The effects of the Mach number and the tube diameter on the pressure loss coefficient are discussed and a correlation for the pressure loss coefficient is proposed.


Author(s):  
Tiantian Zhang ◽  
Li Jia

Flow characteristics of nitrogen flows in the three different microchannels (hydraulic diameter Dh ranging 30–3000 μm) have been investigated numerically considering of the effect of compressibility and viscosity heating. It indicated that pressure drop at inlet and outlet is nonlinear with Reynolds number. Transition Re is as low as about 1200 for microchannels with Dh = 300 μm. To incompressible flow, Dh, has no effect on friction factor f. However, L/Dh has great effect on f, and f increases with the decrease of L/Dh. It was found from numerical results that fRe can be expressed as a function of Mach number. By compared with the experimental results, the function has been proved right. When pressure drop at inlet and outlet is over 10kPa, the effect of compressibility could not be neglected. This implies that the effect of compressibility in microchannels can be described better by pressure drop at inlet and outlet than Ma, which is in contrast to the practice in the conventional scale. At last, the viscosity heating effect was simply analyzed. It was found that the effect of viscosity heating increases with the increase of Re and decrease of size.


Author(s):  
D Kawashima ◽  
T Yamada ◽  
C Hong ◽  
Y Asako

The Mach number and pressure at the outlet plane of a straight micro-tube were investigated numerically for both laminar and turbulent flow cases. The numerical methodology is based on the arbitrary Lagrangian-Eulerian method. The LB1 turbulence model was used for the turbulent flow case. The compressible momentum and energy equations with the assumption of the ideal gas were solved. The computational domain is extended to the downstream region from the micro-tube outlet. The back pressure was given to the outside of the downstream region. The computations were performed for a tube whose diameter ranges from 50 to 500 μm. The average Mach number at the outlet plane of the choked flow depends on the tube diameter and ranges from 1.16 to 1.25. The flow characteristics of the under-expanded gas flow in a straight micro-tube were revealed.


Author(s):  
Shintaro Murakami ◽  
Yutaka Asako

Two-dimensional compressible momentum and energy equations are solved numerically to obtain the effect of viscosity on gaseous flow in a micro converging-diverging nozzle. The numerical methodology is based on the Arbitrary-Lagrangian-Eulerian (ALE) method. The numerical computations were performed for a wide range of the diverging angle and throat height and for no-heat conduction flow. The results are compared with one-dimensional analytical solutions for flow in a conventional sized nozzle and the effects of the viscosity on gaseous flow in the micro-nozzle are discussed.


Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 875 ◽  
Author(s):  
Quang Khai Nguyen ◽  
Kwang Hyo Jung ◽  
Gang Nam Lee ◽  
Sung Bu Suh ◽  
Peter To

In this study, the pressure distribution and flow coefficient of a globe valve are investigated with a series of experiments conducted in a flow test loop. The experiments are performed on a three-inch model test valve from an eight-inch ANSI (American National Standards Institute) B16.11—Class 2500# prototype globe valve with various pump speeds and full range of valve openings. Both inherent and installed flow characteristics are measured, and the results show that the flow coefficient depends not only on the valve geometry and valve opening but also on the Reynolds number. When the Reynolds number exceeds a certain value, the flow coefficients are stable. In addition, the pressures at different positions in the upstream and the downstream of the valve are measured and compared with recommendation per ANSI/ISA-75.01 standard. The results show that, in single-phase flow, the discrepancies in pressure between different measurement locations within close range of 10 nominal diameter from the valve are inconsiderable.


2018 ◽  
Vol 7 (4.35) ◽  
pp. 617
Author(s):  
P. Mathupriya ◽  
L. Chan ◽  
H. Hasini ◽  
A. Ooi

The numerical study of the flow over a two-dimensional cylinder which is symmetrically confined in a plane channel is presented to study the characteristics of vortex shedding. The numerical model has been established using direct numerical simulation (DNS) based on the open source computational fluid dynamics (CFD) code named OpenFOAM. In the present study, the flow fields have been computed at blockage ratio, β of 0.5 and at Reynolds number, Re of 200 and 300. Two-dimensional simulations investigated on the effects of Reynolds number based on the vortex formation and shedding frequency. It was observed that the presence of two distinct shedding frequencies appear at higher Reynolds number due to the confinement effects where there is strong interactions between boundary layer, shear layer and the wake of the cylinder. The range of simulations conducted here has shown to produce results consistent with that available in the open literature. Therefore, OpenFOAM is found to be able to accurately capture the complex physics of the flow.


2014 ◽  
Vol 886 ◽  
pp. 417-421
Author(s):  
Yong Tao Wang ◽  
Zhong Min Yan ◽  
Hui Min Wang

Flow characteristics of two different diameters cylinders in a tandem arrangement were investigated numerically in a uniform flow. The diameter of the downstream main cylinder was kept constant, and the diameter ratio between the upstream control cylinder and the downstream one was varied from 0.1 to 1.0. The studied Reynolds number based on the diameter of the downstream main cylinder were 100 and 150. The gap between the control cylinder and the main cylinder ranged from 0.1 to 4.0 times the diameter of the main cylinder. It is concluded that the gap ratio and the diameter ratio between the two cylinders have important effects on the lift coefficients and pressure distribution.


Author(s):  
G. H. Tang ◽  
Y. L. He

Gaseous flow characteristics in fused silica microtubes and square microchannels are studied experimentally. The existing works in the literature on experimental gaseous flow are analyzed. The data in fused silica micro circular tubes with diameters ranging from 50 μm to 201 μm and the data in fused silica micro square channels with hydraulic diameter ranging from 52 μm to 100 μm show that the flow friction factors are in good agreement with the theoretical prediction for conventional tubes and no distinguishable deviation is observed. The transition Reynolds number is around 2000 and a slight early transition from laminar to turbulent is observed due to the compressibility effect. For the helium flow in fused silica microtubes with inner diameters ranging from 10 μm to 20 μm, the decrease in friction factor is observed. In addition, factors including roughness, compressibility and rarefaction that may have significant effects on flow characteristics in microchannels are discussed.


Sign in / Sign up

Export Citation Format

Share Document