Mechanisms of Heat and Mass Transfer for Thin-Film Evaporation With Velocity Slip and Temperature Jump

Author(s):  
Xiu Xiao ◽  
Chunji Yan ◽  
Yulong Ji

Abstract Velocity slip and temperature jump at the solid-liquid interface are important phenomena in microchannel heat transfer. A comprehensive mathematical model considering both velocity slip condition and temperature jump at the solid-liquid interface is developed to understand the mechanisms of heat and mass transfer during thin-film evaporation in this paper. The model structure is established based on the lubrication theory, Clausius-Clapeyron equation and Young-Laplace equation. To better formulate the film evaporation process, three dimensionless parameters representing the effects of slip length coefficient, temperature jump and wall superheat degree respectively, are introduced in the present model. The analytical solution provides insight of film thickness and heat transfer characteristics for the evaporating thin film. It shows that as the slip length and temperature jump coefficient decrease, the length of evaporating thin film region is shortened and the location of maximum heat flux moves closer to the initial evaporating point. The effect of slip condition on heat flux is small, but the increase of temperature jump can reduce the peak heat flux significantly. Furthermore, the analysis on the three thermal resistances which are caused by temperature jump, conduction through liquid film and evaporation on liquid-vapor interface result in a better understanding for effective heat transfer during thin-film evaporation.

Author(s):  
Solomon Adera ◽  
Rishi Raj ◽  
Evelyn N. Wang

Thermal management is increasingly becoming a bottleneck for a variety of high power density applications such as integrated circuits, solar cells, microprocessors, and energy conversion devices. The performance and reliability of these devices are usually limited by the rate at which heat can be removed from the device footprint, which averages well above 100 W/cm2 (locally this heat flux can exceed 1000 W/cm2). State-of-the-art air cooling strategies which utilize the sensible heat are insufficient at these large heat fluxes. As a result, novel thermal management solutions such as via thin-film evaporation that utilize the latent heat of vaporization of a fluid are needed. The high latent heat of vaporization associated with typical liquid-vapor phase change phenomena allows significant heat transfer with small temperature rise. In this work, we demonstrate a promising thermal management approach where square arrays of cylindrical micropillar arrays are used for thin-film evaporation. The microstructures control the liquid film thickness and the associated thermal resistance in addition to maintaining a continuous liquid supply via the capillary pumping mechanism. When the capillary-induced liquid supply mechanism cannot deliver sufficient liquid for phase change heat transfer, the critical heat flux is reached and dryout occurs. This capillary limitation on thin-film evaporation was experimentally investigated by fabricating well-defined silicon micropillar arrays using standard contact photolithography and deep reactive ion etching. A thin film resistive heater and thermal sensors were integrated on the back side of the test sample using e-beam evaporation and acetone lift-off. The experiments were carried out in a controlled environmental chamber maintained at the water saturation pressure of ≈3.5 kPa and ≈25 °C. We demonstrated significantly higher heat dissipation capability in excess of 100 W/cm2. These preliminary results suggest the potential of thin-film evaporation from microstructured surfaces for advanced thermal management applications.


Author(s):  
Chen Li ◽  
G. P. Peterson ◽  
Ji Li ◽  
Nikhil Koratkar

The thin film evaporation process through use of thin micro-scale sintered copper mesh screen was proven to be a very effective heat transfer mechanism with high critical heat flux (CHF). This efficient heat transfer mechanism is widely used in designing heat pipe, Capillary Pumped Loops (CPL), and drying process, however, the nucleation process and meniscus dynamics at the liquid-vapor-solid interface are not directly observed and systematically studied. Very few visual investigation in thin film evaporation has been conducted. In the existing two visual studies, the interface thermal resistance between coating and the heated wall was not seriously considered, and the heat flux was limited below 35 W/cm2. In this visualization investigation, the nucleation process and meniscus dynamics from initial condition to drying out were observed and well documented. To minimize the interface thermal resistance, the micro scale wicking was sintered to heated wall directly. High quality images were acquired through a well-designed visualization system. The majority of nucleate bubbles, whose diameters are at a magnitude of 10 μm, were found to form on the top wire surfaces instead of inside the porous media at moderate heat flux. Few large size bubbles were observed to grow inside capillary wicks, however, their presence did not seem to stop the evaporation process as reported before. The menisci receding process was visually captured for the first time. The minimum menisci radius was found to form at the smallest corners and pores. It is also illustrated the thin liquid area increases when the menisci recede and the thin liquid film evaporation is the dominant heat transfer mode at high heat flux. The present work visually confirms the heat transfer regimes of evaporation on micro porous media, which was proposed by Li and Peterson [2], and further improves the understanding to the nucleate boiling and thin liquid film evaporation on the surfaces of micro sintered copper mesh screen.


Author(s):  
Bingyao Lin ◽  
Nanxi Li ◽  
Shiyue Wang ◽  
Leren Tao ◽  
Guangming Xu ◽  
...  

Abstract In this paper, a thin film evaporation model that includes expressions for energy, mass and momentum conservation was established through the augmented Young-Laplace model. Based on this model, the effects of pore size and superheating on heat transfer during thin film evaporation were analyzed. The influence of the wick diameter of the loop heat pipe (LHP) on the critical heat flux of the evaporator is analyzed theoretically. The results show that pore size and superheating mainly influence evaporation through changes in the length of the transition film and intrinsic meniscus. The contribution of the transition film area is mainly reflected in the heat transfer coefficient, and the contribution of the intrinsic meniscus area is mainly apparent in the quantity of heat that is transferred. When an LHP evaporator is operating in a state of surface evaporation, a higher heat transfer coefficient can be achieved using a smaller pore size.


2006 ◽  
Vol 129 (8) ◽  
pp. 1091-1095 ◽  
Author(s):  
Mete Avcı ◽  
Orhan Aydın

In this study, exact analytical results are presented for fully developed mixed convective heat transfer of a Newtonian fluid in an open-ended vertical parallel plate microchannel with asymmetric wall heating at uniform heat fluxes. The velocity slip and the temperature jump at the wall are included in the formulation. The effects of the modified mixed convection parameter, Grq∕Re, the Knudsen number, Kn, and the ratio of wall heat flux, rq=q1∕q2, on the microchannel hydrodynamic and thermal behaviors are determined. Finally, a Nu=f(Grq∕Re,Kn,rq) expression is developed. For, the limiting case of Kn=0, the results are found to be in an excellent agreement with those in the existing literature.


Author(s):  
Hani H. Sait ◽  
Steve M. Demsky ◽  
HongBin Ma

An analytical model describing thin film evaporation is developed that includes the effects of surface tension, frictional shear stress, wetting characteristics and disjoining pressure. The effects of thermal conductivity of working fluids and operating temperature on the evaporating thin film region are also studied. The results indicate that when the thermal conductivity of the working fluid increases, a high heat flux can be removed from the evaporating thin film region. The operating temperature affects the thin film evaporation. The higher the operating temperature, the more heat flux can be removed from the region. The information of thin film evaporation presented in the paper results in a better understanding of heat transfer mechanism occurring in micro heat pipes.


2008 ◽  
Vol 130 (5) ◽  
Author(s):  
A. J. Jiao ◽  
H. B. Ma ◽  
J. K. Critser

A mathematical model predicting the heat transport capability in a miniature flat heat pipe (FHP) with a wired wick structure was developed to analytically determine its maximum heat transport rate including the capillary limit. The effects of gravity on the profile of the thin-film-evaporation region and the distribution of the heat flux along a curved surface were investigated. The heat transfer characteristics of the thin-film evaporation on the curved surface were also analyzed and compared with that on a flat surface. Combining the analysis on the thin-film-condensation heat transfer in the condenser, the model can be used to predict the total temperature drop between the evaporator and condenser in the FHP. In order to verify the model, an experimental investigation was conducted. The theoretical results predicted by the model agree well with the experimental data for the heat transfer process occurring in the FHP with the wired wick structure. Results of the investigation will assist in the optimum design of the curved-surface wicks to enlarge the thin-film-evaporation region and a better understanding of heat transfer mechanisms in heat pipes.


Author(s):  
Chunji Yan ◽  
Xinxiang Pan ◽  
Xiaowei Lu

A mathematic model, which can be used to predict the evaporation and fluid flow in thin film region, is developed based on momentum and energy conservations and the augmented Young-Laplace equation in this paper. In the model the variations of the enthalpy and kinetics energy of the thin-film along the evaporating region are considered. By theoretical analysis, we have obtained the governing equation for thin film profile. The fluid flow and phase-change heat transfer in an evaporating extended meniscus are numerically studied. The differences between the model considering momentum conservation only and including both momentum and energy conservations are compared. It is found that the maximum heat flux of the thin-film evaporation by using two mathematical models obtained has no change, but when considering the momentum and energy conservations the total heat transfer rate unit width along the thin-film evaporation region is greater than that of only including momentum equation.


Sign in / Sign up

Export Citation Format

Share Document