Multi-Spectral Techniques Applied for the Measurement of the Microscale Temperature Through Cooled Multiplier Tube in Photon Counting Mode

Author(s):  
Thomas Pierre ◽  
Benjamin Re´my ◽  
Alain Degiovanni

The aim of this paper is to present a non-intrusive and optical method based on the classical thermal radiation laws for the measurement of microscale surface temperature. To overcome the diffraction limit, measurements are performed in the ultraviolet-visible range. According to the Planck’s law, emitting energy is low at these wavelengths and only a photonic flux can be measured through a cooled Photo-Multiplier Tube (PMT) and a photon-counting card. The photonic flux exhibits a random phenomenon that can be well-described through classical statistic laws such as Poisson or Normal distributions. We show in this paper that the signal we measure agrees well with these laws and that the surface temperature can be obtained either from the average or the standard-deviation of the Photonic flux. Multi-spectral techniques based on either physical and optical techniques like monochromatic filters and reflection/transmission diffraction gratings or digital techniques as a Multi-Channel Analyser (MCA) are proposed to get ride of the knowledge of the local surface emissivity. This is of a particular interest for the measurement of temperature in microscale applications. Finally, temperature measurements carried out on a specific High Temperature Blackbody developed in our laboratory are compared with those obtained through an infrared camera and allow to validate our facility and the presented measurement techniques.

Author(s):  
Mike Bruce ◽  
Rama R. Goruganthu ◽  
Shawn McBride ◽  
David Bethke ◽  
J.M. Chin

Abstract For time resolved hot carrier emission from the backside, an alternate approach is demonstrated termed single point PICA. The single point approach records time resolved emission from an individual transistor using time-correlated-single-photon counting and an avalanche photo-diode. The avalanche photo-diode has a much higher quantum efficiency than micro-channel plate photo-multiplier tube based imaging cameras typically used in earlier approaches. The basic system is described and demonstrated from the backside on a ring oscillator circuit.


Author(s):  
Maria Concetta Maccarone ◽  
Giovanni La Rosa ◽  
Osvaldo Catalano ◽  
Salvo Giarrusso ◽  
Alberto Segreto ◽  
...  

AbstractUVscope is an instrument, based on a multi-pixel photon detector, developed to support experimental activities for high-energy astrophysics and cosmic ray research. The instrument, working in single photon counting mode, is designed to directly measure light flux in the wavelengths range 300-650 nm. The instrument can be used in a wide field of applications where the knowledge of the nocturnal environmental luminosity is required. Currently, one UVscope instrument is allocated onto the external structure of the ASTRI-Horn Cherenkov telescope devoted to the gamma-ray astronomy at very high energies. Being co-aligned with the ASTRI-Horn camera axis, UVscope can measure the diffuse emission of the night sky background simultaneously with the ASTRI-Horn camera, without any interference with the main telescope data taking procedures. UVscope is properly calibrated and it is used as an independent reference instrument for test and diagnostic of the novel ASTRI-Horn telescope.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ibtissame Khaoua ◽  
Guillaume Graciani ◽  
Andrey Kim ◽  
François Amblard

AbstractFor a wide range of purposes, one faces the challenge to detect light from extremely faint and spatially extended sources. In such cases, detector noises dominate over the photon noise of the source, and quantum detectors in photon counting mode are generally the best option. Here, we combine a statistical model with an in-depth analysis of detector noises and calibration experiments, and we show that visible light can be detected with an electron-multiplying charge-coupled devices (EM-CCD) with a signal-to-noise ratio (SNR) of 3 for fluxes less than $$30\,{\text{photon}}\,{\text{s}}^{ - 1} \,{\text{cm}}^{ - 2}$$ 30 photon s - 1 cm - 2 . For green photons, this corresponds to 12 aW $${\text{cm}}^{ - 2}$$ cm - 2 ≈ $$9{ } \times 10^{ - 11}$$ 9 × 10 - 11 lux, i.e. 15 orders of magnitude less than typical daylight. The strong nonlinearity of the SNR with the sampling time leads to a dynamic range of detection of 4 orders of magnitude. To detect possibly varying light fluxes, we operate in conditions of maximal detectivity $${\mathcal{D}}$$ D rather than maximal SNR. Given the quantum efficiency $$QE\left( \lambda \right)$$ Q E λ of the detector, we find $${ \mathcal{D}} = 0.015\,{\text{photon}}^{ - 1} \,{\text{s}}^{1/2} \,{\text{cm}}$$ D = 0.015 photon - 1 s 1 / 2 cm , and a non-negligible sensitivity to blackbody radiation for T > 50 °C. This work should help design highly sensitive luminescence detection methods and develop experiments to explore dynamic phenomena involving ultra-weak luminescence in biology, chemistry, and material sciences.


Hand ◽  
2021 ◽  
pp. 155894472110146
Author(s):  
Francisco R. Avila ◽  
Rickey E. Carter ◽  
Christopher J. McLeod ◽  
Charles J. Bruce ◽  
Davide Giardi ◽  
...  

Background Wearable devices and sensor technology provide objective, unbiased range of motion measurements that help health care professionals overcome the hindrances of protractor-based goniometry. This review aims to analyze the accuracy of existing wearable sensor technologies for hand range of motion measurement and identify the most accurate one. Methods We performed a systematic review by searching PubMed, CINAHL, and Embase for studies evaluating wearable sensor technology in hand range of motion assessment. Keywords used for the inquiry were related to wearable devices and hand goniometry. Results Of the 71 studies, 11 met the inclusion criteria. Ten studies evaluated gloves and 1 evaluated a wristband. The most common types of sensors used were bend sensors, followed by inertial sensors, Hall effect sensors, and magnetometers. Most studies compared wearable devices with manual goniometry, achieving optimal accuracy. Although most of the devices reached adequate levels of measurement error, accuracy evaluation in the reviewed studies might be subject to bias owing to the use of poorly reliable measurement techniques for comparison of the devices. Conclusion Gloves using inertial sensors were the most accurate. Future studies should use different comparison techniques, such as infrared camera–based goniometry or virtual motion tracking, to evaluate the performance of wearable devices.


2021 ◽  
Vol 13 (7) ◽  
pp. 3910
Author(s):  
Michael Gräf ◽  
Markus Immitzer ◽  
Peter Hietz ◽  
Rosemarie Stangl

Urban green infrastructures offer thermal regulation to mitigate urban heat island effects. To gain a better understanding of the cooling ability of transpiring plants at the leaf level, we developed a method to measure the time series of thermal data with a miniaturized, uncalibrated thermal infrared camera. We examined the canopy temperature of four characteristic living wall plants (Heuchera x cultorum, Bergenia cordifolia, Geranium sanguineum, and Brunnera macrophylla) under increasing drought stress and compared them with a well-watered control group. The method proved suitable to evaluate differences in canopy temperature between the different treatments. Leaf temperatures of water-stressed plants were 6 to 8 °C higher than those well-watered, with differences among species. In order to cool through transpiration, vegetation in green infrastructures must be sufficiently supplied with water. Thermal cameras were found to be useful to monitor vertical greening because leaf surface temperature is closely related to drought stress. The usage of thermal cameras mounted on unmanned aerial vehicles could be a rapid and easy monitoring system to cover large façades.


Author(s):  
Kennethrex O. Ndukaife ◽  
George Agbai Nnanna

An Infrared thermography (IRT) technique for characterization of fouling on membrane surface has been developed. The emitted spectral power from the fouled membrane is a function of emissivity and surface morphology. In this work, a FLIR A320 IR camera was used to measure surface temperature and emissivity. The surface temperature and the corresponding emissivity value of various areas on the fouled membrane surface is measured by the infrared camera and recorded alongside its thermogram. Different fouling experiments were performed using different concentrations of aluminum oxide nanoparticle mixed with deionized water as feed solution (333 ppm, 1833 ppm and 3333 ppm) so as to investigate the effect of feed concentration on the degree of fouling and thus its effect on the emissivity values measured on the membrane surfaces. Surface plots in 3D and Line plots are obtained for the measured emissivity values and thickness of the fouling deposit on the membrane surface respectively. The results indicate that the IRT technique is sensitive to changes that occur on the membrane surface due to deposition of contaminants on the membrane surface and that emissivity is a function of temperature, surface roughness and thickness of the specimen under investigation.


2022 ◽  
Vol 17 (01) ◽  
pp. C01036
Author(s):  
P. Grybos ◽  
R. Kleczek ◽  
P. Kmon ◽  
A. Krzyzanowska ◽  
P. Otfinowski ◽  
...  

Abstract This paper presents a readout integrated circuit (IC) of pixel architecture called MPIX (Multithreshold PIXels), designed for CdTe pixel detectors used in X-ray imaging applications. The MPIX IC area is 9.6 mm × 20.3 mm and it is designed in a CMOS 130 nm process. The IC core is a matrix of 96 × 192 square-shaped pixels of 100 µm pitch. Each pixel contains a fast analog front-end followed by four independently working discriminators and four 12-bit ripple counters. Such pixel architecture allows photon processing one by one and selecting the X-ray photons according to their energy (X-ray colour imaging). To fit the different range of applications the MPIX IC has 8 possible different gain settings, and it can process the X-ray photons of energy up to 154 keV. The MPIX chip is bump-bonded to the CdTe 1.5 mm thick pixel sensor with a pixel pitch of 100 µm. To deal with the charge sharing effect coming from a thick semiconductor pixel sensor, multithreshold pattern recognition algorithm is implemented in the readout IC. The implemented algorithm operates both in the analog domain (to recover the total charge spread between neighboring pixels, when a single X-ray photon hits the border of the pixel) and in the digital domain (to allocate a hit position to a single pixel).


1982 ◽  
Vol 67 ◽  
pp. 271-278
Author(s):  
C.F.W. Harmer ◽  
Dianne L. Harmer

Two detector systems, recently developed at the Royal Greenwich Observatory, have undergone tests on the coude spectrograph of the 30-inch telescope at Herstmonceux. The first is an intensified Reticon system, used in a photon counting mode; the second is a directly illuminated, cooled CID.


2004 ◽  
pp. 611-614 ◽  
Author(s):  
Jean-Luc Gach ◽  
Christian Guillaume ◽  
Olivier Boissin ◽  
Cyril Cavadore

Sign in / Sign up

Export Citation Format

Share Document