Newest Developments on the Manufacture of Helical Profiles by Hot Extrusion

Author(s):  
Nooman Ben Khalifa ◽  
A. Erman Tekkaya

The paper presents a new innovative direct extrusion process, Helical Profile Extrusion (HPE), which increases the flexibility of aluminum profile manufacturing processes. The application fields of such profiles can be seen in screw rotors for compressors and pumps. The investigations concentrate on experimental and numerical analyses by 3D-FEM simulations to analyze the influence of friction on the material flow in the extrusion die in order to find out the optimal parameters with reference to the twisting angle and contour accuracy. By means of FEM, the profile shape could be optimized by modifying the die design. The numerical results were validated by experiments. For these investigations, a common aluminum alloy AA6060 was used. The accuracy of the profile contour could be improved significantly. However, increasing the twist angle is limited due to geometrical aspects.

Author(s):  
Nooman Ben Khalifa ◽  
A. Erman Tekkaya

A new innovative direct extrusion process, helical profile extrusion (HPE) is presented, which increases the flexibility of aluminum profile manufacturing processes. The application fields of such profiles can be seen in screw rotors for compressors and pumps. The investigations concentrate on experimental and numerical analyses by 3D-FEM simulations to analyze the influence of friction and the material flow on the twisting angle and contour accuracy. By means of finite-element method (FEM), the profile shape could be improved by modifying the die design. The numerical results were validated by experiments. For these investigations, a common aluminum alloy AA6060 was used. Mainly, the friction in the die influences the twist angle and the shape of the helical profile. Two die coatings were analyzed, but the friction was not substantially decreased in any of these cases. Although there is no efficient practical solution for reducing the friction in extrusion dies using tested die coatings, the required profile contour could be achieved by new die designing and by modifying the material flow. However, increasing the twist angle is limited due to geometrical aspects of this technology, namely, by the ratio of the volume to the contact area with the die for the displaced metal.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Jun Cai ◽  
Kuaishe Wang ◽  
Bing Zhang ◽  
Wen Wang

With the rapid development of the shipping and the power industry, the demand for high-performance cupronickel alloy pipes is greatly increasing. The main processing methods of this alloy include semisolid ingot casting and deformation by hot extrusion. Many defects appear during the hot extrusion process for large diameter cupronickel alloy pipes, which results in considerable problems. Therefore, numerical simulation of hot extrusion for cupronickel alloy pipes before the practical production is of vital significance to properly determine the deformation parameters. In order to obtain the influence of processing parameters on the piercing extrusion process of large diameter cupronickel alloy pipe, metal flowing law under different deformation conditions was simulated and analyzed via employing a 3D FEM code. The results showed that piercing speed had no obvious influence on the cupronickel alloy billet. However, the friction had significant influence on the piercing process of cupronickel alloy billet: with the increase of friction coefficient, the temperature and the load increased.


Author(s):  
Qingwen Deng ◽  
Yuyi Lin

Abstract This paper presents a one-dimensional analytical model of the ram extrusion process of a powdered material and a procedure for optimizing the shape of the extrusion die. Powdered coal mixed with water and asphalt was used as the extrudate material in the model development. The analytical model relates the pressure at the entrance of the die to the exit pressure of the die. Certain key parameters of the model were obtained from experiments. The comparison of the inlet pressure derived from the analytical model and the value obtained from the experimental procedure shown a good agreement. Optimization algorithms were applied to generate the ideal die shape. The objective is to minimize the power consumed in the extrusion process, while maintaining maximum strength for the extrudates. It is concluded from the study that the model and the optimization procedure developed for the model can be used in extrusion studies of other powdered materials.


2011 ◽  
Vol 491 ◽  
pp. 265-272 ◽  
Author(s):  
L. Li ◽  
F. He ◽  
X. Liu ◽  
Yan Lou ◽  
Jie Zhou ◽  
...  

In the present study, the evolution of the grain structure of a Mg-Al-Ca-based alloy during hot extrusion was simulated with the cellular automation method. The Laasraoui-Jonas microstructure model was used to describe the dislocation evolution inside crystallites during dynamic recrystallization. The parameters in the Laasraoui-Jonas model, such as the hardening parameter, recovery parameter and material constants, were determined from the flow stress-strain data obtained from hot compression tests using a Gleeble-1500 thermomechanical simulator. The extrusion process was simulated using a DEFORM 3D FEM code. The influence of ram speed on grain structure evolution was analyzed. It was found that the average grain size increases with increasing ram speed. Good agreements between the predicted and observed grain structures were achieved.


Author(s):  
A. Lontos ◽  
K.-D. Bouzakis ◽  
G. Demosthenous ◽  
A. Baldoukas

On of the most typical forming processes used for the production of long, straight semi-finished products in the form of various section geometries is extrusion. Hot extrusion is a thermo-mechanical process whish involves complicated interactions between process parameters, tooling and deforming material /1,2/. In the present paper, FEM simulation is performed in the aluminum extrusion using circular dies with different geometries in order to extract quantitative simulating results regarding various forming parameters. Most specifically the parameters that are investigated are the die design-geometry, the process parameters (i.e. ram speed, container temperature, billet temperature) and the product quality (i.e. extruded shape, surface condition). The finite element modeling is based on 3D simulation tools using the DEFORM 3D software /3–5/. The used work piece is the aluminum AA6061 in cylindrical form with a diameter of 14 mm. The used material for the extrusion die is the hot work steel AISI H13. The geometry of the die is circular with a variation in die angle. The container and the billet temperature will vary from 450 to 550 degrees, and the mandrel (ram) speed will be at the range of 2 mm/sec. On the basis of simulating results such as pressure distribution on the extrusion die, effective stresses on the billet and product quality, new and improve die geometry will be introduced. Although the simulation problem is an axisymmetric one the authors decide to proceed with 3D FEM simulation in order to examine and verify the 3D simulating results. This paper is the first part of a further research project in which more complicated die geometries will be used as simulating and experimental specimens. In addition to simulating results, experimental results will be presented in the next few months.


2013 ◽  
Vol 652-654 ◽  
pp. 1942-1947
Author(s):  
Guang Chun Wang ◽  
Chao Feng ◽  
Bin Hai Hao ◽  
Tao Wang

Improving the extrusion die wear condition was significant to increase the products dimensional accuracy and die life time. In this paper, the hot extrusion process of spur-gear shaft is analyzed by finite element method, and the die wear distributions of different blank shapes and die structures are calculated using the modified Archard model considering the effect of die temperature. According to the results, using the preformed blank shape and floating die could reduce the die wear obviously.


2010 ◽  
Vol 443 ◽  
pp. 98-103 ◽  
Author(s):  
Yeong-Maw Hwang ◽  
Shih Ming Tu

This study involves analyses and experiments of hot extrusion of magnesium alloy strips. Hot compression tests were firstly conducted to obtain the magnesium alloy’s plastic flow stresses at high temperatures. These data are used in the finite element simulations of the thin strip extrusion process. Using the FE simulations, the flow pattern of the magnesium alloy billet within the die, the temperature variation and the thickness distribution at the die exit were analyzed. The effects of different die bearing height design, initial billet temperatures and ram speed on the extrusion load, the temperature at the die exit and the product thickness distribution were also discussed. Finally, hot extrusion experiments were conducted and the experimental values of the extrusion load and dimensions of the products were compared with the analytical values to validate the analytical model. Sound products were obtained using the best designed bearing heights and other appropriate extrusion conditions.


2012 ◽  
Vol 580 ◽  
pp. 37-41
Author(s):  
Qiong Lin ◽  
Bin Meng ◽  
Qing Hua Yang

The numerical simulation for spur gear vibration extrusion is performed in this paper. The metal flow characteristic and load-stroke relationship during forming process is analyzed and then compared with traditional metal extrusion process. The results revealed the axial vibration of cavity die can both reduce forming load and benefit for metal flow, which could achieve better forming quality. Finally according to the processing requirements, the vibration generator and whole extrusion die structure is designed.


2018 ◽  
Vol 54 (5A) ◽  
pp. 191
Author(s):  
Do Anh Tuan

Porthole die extrusion has a great advantage in the forming of hollow section of aluminum alloy tube. This paper aims at the development of an extruding seam square tube of AA7075 high strength aluminum alloy. In order to increase the welding pressure of the hollow AA7075 tube in extrusion process, a special die feature has been created. Several different proportions of chamber structure in outlet of extrusion die have been designed. The finite element analysis software DEFORM 3D to analyze various design parameters on the load – displacement and the welding pressure have been studied. In this study, a different high proportion in material guiding chamber has been defined. The results showed that if a suitable material guiding chamber has been built then welding pressure can be increased rapidly. When the ratio of chamber height and length is 2:1 the increased welding pressure is the best.


Sign in / Sign up

Export Citation Format

Share Document