scholarly journals Study on the Influence of Processing Parameters on Piercing Extrusion Process of Large Diameter Cupronickel Alloy Pipes Using 3D FEM Analysis

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Jun Cai ◽  
Kuaishe Wang ◽  
Bing Zhang ◽  
Wen Wang

With the rapid development of the shipping and the power industry, the demand for high-performance cupronickel alloy pipes is greatly increasing. The main processing methods of this alloy include semisolid ingot casting and deformation by hot extrusion. Many defects appear during the hot extrusion process for large diameter cupronickel alloy pipes, which results in considerable problems. Therefore, numerical simulation of hot extrusion for cupronickel alloy pipes before the practical production is of vital significance to properly determine the deformation parameters. In order to obtain the influence of processing parameters on the piercing extrusion process of large diameter cupronickel alloy pipe, metal flowing law under different deformation conditions was simulated and analyzed via employing a 3D FEM code. The results showed that piercing speed had no obvious influence on the cupronickel alloy billet. However, the friction had significant influence on the piercing process of cupronickel alloy billet: with the increase of friction coefficient, the temperature and the load increased.

2020 ◽  
Vol 3 (3) ◽  
pp. 195-209 ◽  
Author(s):  
Stephan Rosenthal ◽  
Fabian Maaß ◽  
Mike Kamaliev ◽  
Marlon Hahn ◽  
Soeren Gies ◽  
...  

AbstractLightweight design is one of the current key drivers to reduce the energy consumption of vehicles. Design methodologies for lightweight components, strategies utilizing materials with favorable specific properties and hybrid materials are used to increase the performance of parts for automotive applications. In this paper, various forming processes to produce light parts are described. Material lightweight design is discussed, covering the manufacturing processes to produce hybrid components like fiber–metal, polymer–metal and metal–metal composites, which can be used in subsequent deep drawing or combined forming processes. Approaches to increasing the specific strength and stiffness with thermomechanical forming processes as well as the in situ control of the microstructure of such components are presented. Structure lightweight design discusses possibilities to plastically form high-strength or high-performance materials like magnesium or titanium in sheet, profile and tube forming operations. To join those materials and/or dissimilar materials, new joining by forming technologies are shown. To economically produce lightweight parts with gears or functional elements, incremental sheet-bulk metal forming is presented. As an important part property, the damage evolution during the forming operations will be discussed to enable even lighter parts through a more reliable design. New methods for predicting and tailoring the mechanical properties like strength and residual stresses will be shown. The possibilities of system lightweight design with forming technologies are presented. A combination of additive manufacturing and forming to produce highly complex parts with integrated functions will be shown. The integration of functions by a hot extrusion process for the manufacturing of shape memory alloys is presented. An in-depth understanding of the newly developed processes, methodologies and effects allows for a more accurate dimensioning of components. This facilitates a reduction in the total mass and an increasing performance of vehicle components.


Author(s):  
Nooman Ben Khalifa ◽  
A. Erman Tekkaya

A new innovative direct extrusion process, helical profile extrusion (HPE) is presented, which increases the flexibility of aluminum profile manufacturing processes. The application fields of such profiles can be seen in screw rotors for compressors and pumps. The investigations concentrate on experimental and numerical analyses by 3D-FEM simulations to analyze the influence of friction and the material flow on the twisting angle and contour accuracy. By means of finite-element method (FEM), the profile shape could be improved by modifying the die design. The numerical results were validated by experiments. For these investigations, a common aluminum alloy AA6060 was used. Mainly, the friction in the die influences the twist angle and the shape of the helical profile. Two die coatings were analyzed, but the friction was not substantially decreased in any of these cases. Although there is no efficient practical solution for reducing the friction in extrusion dies using tested die coatings, the required profile contour could be achieved by new die designing and by modifying the material flow. However, increasing the twist angle is limited due to geometrical aspects of this technology, namely, by the ratio of the volume to the contact area with the die for the displaced metal.


Author(s):  
Nooman Ben Khalifa ◽  
A. Erman Tekkaya

The paper presents a new innovative direct extrusion process, Helical Profile Extrusion (HPE), which increases the flexibility of aluminum profile manufacturing processes. The application fields of such profiles can be seen in screw rotors for compressors and pumps. The investigations concentrate on experimental and numerical analyses by 3D-FEM simulations to analyze the influence of friction on the material flow in the extrusion die in order to find out the optimal parameters with reference to the twisting angle and contour accuracy. By means of FEM, the profile shape could be optimized by modifying the die design. The numerical results were validated by experiments. For these investigations, a common aluminum alloy AA6060 was used. The accuracy of the profile contour could be improved significantly. However, increasing the twist angle is limited due to geometrical aspects.


2011 ◽  
Vol 491 ◽  
pp. 265-272 ◽  
Author(s):  
L. Li ◽  
F. He ◽  
X. Liu ◽  
Yan Lou ◽  
Jie Zhou ◽  
...  

In the present study, the evolution of the grain structure of a Mg-Al-Ca-based alloy during hot extrusion was simulated with the cellular automation method. The Laasraoui-Jonas microstructure model was used to describe the dislocation evolution inside crystallites during dynamic recrystallization. The parameters in the Laasraoui-Jonas model, such as the hardening parameter, recovery parameter and material constants, were determined from the flow stress-strain data obtained from hot compression tests using a Gleeble-1500 thermomechanical simulator. The extrusion process was simulated using a DEFORM 3D FEM code. The influence of ram speed on grain structure evolution was analyzed. It was found that the average grain size increases with increasing ram speed. Good agreements between the predicted and observed grain structures were achieved.


2005 ◽  
Vol 475-479 ◽  
pp. 497-500
Author(s):  
Ritsuko Tsuzuki ◽  
Katsuyoshi Kondoh

Super light and high performance Mg2Si/Mg composites, which had excellent mechanical properties, were developed via the combination of solid-state synthesis and hot extrusion process. In this study, cold compacting (CP) and repeated plastic working (RPW) were firstly carried out for the mixture of Mg-Si powders, and the refinement of both Mg grains and dispersoids. Each specimen was evaluated by observation of microstructure and tensile test. As a result, it was understood that Mg2Si dispersoids were refined and dispersed into Mg matrix, and were flowed along extrusion direction. And their mechanical properties were higher than the conventional die casting alloys. Also the effect of RPW as the improvement of properties and the decrease of synthesis temperature were confirmed.


Author(s):  
Wanzhou Li ◽  
Tao Sun ◽  
Yuechen Hu ◽  
Wei Li

Metal extrusion is one of the most significant methods in the field of plastic deformation. The 36,000-ton vertical extrusion press uses one-piece hot extrusion molding method to produce high-pressure, large-diameter, thick-walled, seamless, alloy-steel pipe, which is required by ultrasupercritical power generator units and the third generation of nuclear power plants. The main table (extruding platform) is driven by 36,000-ton thrust. The extrusion process is a typical nonlinear multivariable strong-coupling finite-time system. In this paper, we analyze and solve the large-scaled engineering control problems, including (1) discussion of the mechanical structure of the controlled object and the feature of multivariable strongly coupling for large-scaled parallel-driving hydraulic system, (2) research on the engineering practical simplified control algorithm for multivariable system and propose a way to solve the coupling problem of the hydraulic system, and (3) design of double closed-loop control of velocity and pressure for the new technology of constant velocity extrusion. In our paper, we have proven through practice that the traditional proportional intergral (PI) controlling method, with proper controlling strategy, is still the most efficient and practicable way for a large-dimension complex object in industry.


2011 ◽  
Vol 189-193 ◽  
pp. 1687-1690
Author(s):  
Yi Bian ◽  
Zhi Ping Zhong ◽  
Xiao Hui Ma ◽  
Yue Wen Zhai

Using the method of physical simulation, the vertical extrusion process of thick-walled seamless steel pipe is studied. According to the study and analysis focusing on the die structure and lubrication condition, optimized die parameter which is used for hot extrusion of ferrous metal and a reasonable die - billet composite lubrication program are achieved. Necessary reference and basis are provided to master not only the extrusion process of large diameter thick-walled long pipe, but also the quality control technology.


Author(s):  
Jianhua Zhang ◽  
Xiaojun Zhang ◽  
Tien-Chien Jen ◽  
Jiafu Liu ◽  
Yi-Hsin Yen

With the rapid development of large scale integrated circuit (IC), there are strong demands for silicon wafers developing towards large diameter and thin wafer direction. The fixed-abrasive diamond wire saw (FAWS) technology is often used to cut the large diameter silicon. Currently, the detection of damage layers mainly depends on experiments, which are not only costly and time-consuming, but also would cause the new damage during the detection process, in the FAWS technology. In this paper, the damage layer of the material is studied by using the multi-grain finite element method. The interaction of grains and the whole wire cutting process are analyzed by means of the coupling shear stress field, which got by the simulation results. The influence of the process parameters on the damage layer of the crystal silicon is analyzed by FEM.


2008 ◽  
Vol 570 ◽  
pp. 97-102 ◽  
Author(s):  
M.M. Peres ◽  
J.B. Fogagnolo ◽  
Alberto Moreira Jorge ◽  
Claudio Shyinti Kiminami ◽  
Walter José Botta Filho ◽  
...  

Nanostructured aluminium-based alloys are light yet much stronger than conventional materials, which offer technological opportunities for applications such as in aerospace industry. One of the alloys of great interest for such applications is based on Al-Cu system and one of the main challenges for development of such alloys are associated with powder processing. However, processing such powder alloys into bulk material requires relatively low temperature and high pressure, which presents significant processing difficulties. A two-step approach is being explored in our group to reach the goal of a fully dense bulk material. Firstly, cold pressing is used to partially consolidate the powder material and secondly, hot extrusion is used to consolidate the alloy to full density. Process modelling is being used to design the extrusion process, including the extrusion ratio and extrusion length, to limit the temperature increase during extrusion as a result of adiabatic heating, and to avoid excessive heating to limit the undesirable grain growth of the material. A parametric study of extrusion parameters is presented and processing parameters are recommended. The use of process modelling has proven to be a useful tool in understanding the results from the extrusion experiments and limiting the number of interactions during extrusion.


2013 ◽  
Vol 58 (3) ◽  
pp. 683-689 ◽  
Author(s):  
K. Pieła ◽  
L. Błaz ◽  
M. Jaskowski

Abstract Commercial purity aluminum was extruded by means of KoBo method at varied processing parameters. Received extrudates, with different mechanical and electrical properties and work hardening behavior, were obtained. It was found, that some conditions of KoBo extrusion process such as low initial billet temperature, low extrusion rate and low frequency of oscillating die lead to extremely high strength and high electrical resistivity of the material. The absence of work hardening (up to 40% strain) during subsequent groove rolling is also a specific feature of received materials. It was suggested that mentioned features are related to the development of overbalance concentration of point defects (clusters) generated during the extrusion process. During following cold rolling of the extrudate, mentioned defects annihilate at gliding dislocations and make the dislocation climbing and their rearrangement easier. Therefore, until the exhaustion of this mechanism, the hardening of material during cold rolling is very limited. Following increase of the material strengthening at higher rolling strains point to the return of the material to its typical behavior observed for cold deformed aluminum produced by conventional hot extrusion.


Sign in / Sign up

Export Citation Format

Share Document