Investigation of Wear and Corrosion Characteristics of Stellite-6 and Stellite-21 Layers Deposited by Co-Axial Laser Cladding

Author(s):  
Debapriya Patra Karmakar ◽  
Muvvala Gopinath ◽  
Soham Harmalkar ◽  
Ashish Kumar Nath

Layers of Stellite-6 and Stellite-21 were deposited on tool steel substrates using co-axial laser cladding process with a goal to obtain hard, wear and corrosion resistant coatings. Clad-layers of the two types of Stellite alloys were investigated and compared in terms of microstructure, hardness and sliding wear resistance. Corrosion tests were also performed to study their corrosion behaviour. Micrographs indicated that both the Stellite grades form dendritic structure. However, there were certain differences in composition of dendritic and interdendritic regions of tungsten (W) containing Stellite-6 and molybdenum containing Stellite-21. Stellite-6 clad-layer was found to be slightly harder than Stellite-21 clad-layer near the top surface. Wear resistance of Stellite-21found to be marginally higher than that of Stellite-6 due to lower coefficient of friction. However, Stellite-21layer was found to be more corrosion resistant. Hence, for application involving mechanical loading and wear, both Stellite-6 and Stellite-21 could be a good choice as a clad-material on engineering components; but if the component is going to be subjected to mechanical loading and wear under corrosive environment Stellit-21 could be a better choice.

Alloy Digest ◽  
2010 ◽  
Vol 59 (1) ◽  

Abstract Carpenter CTS-204P (Micro Melt 20-4) alloy is a highly wear- and corrosion-resistant, air-hardening martensitic cold-work stainless die steel produced using Carpenter’s Micro-Melt powder metallurgy process. The excellent wear resistance of the alloy is provided by a significant volume fraction of hard vanadium-rich carbides, while the outstanding corrosion resistance of the alloy is obtained as a result of the chromium-rich matrix. This datasheet provides information on composition, physical properties, hardness, and elasticity. It also includes information on corrosion and wear resistance as well as forming, heat treating, and machining. Filing Code: SS-1051. Producer or source: Carpenter Specialty Alloys.


Author(s):  
Shingo Iwatani ◽  
Yasuhito Ogata ◽  
Keisuke Uenishi ◽  
Kojiro F. Kobayashi ◽  
Akihiko Tsuboi

In order to improve a wear resistance of aluminium alloy, we proposed a diode laser cladding on the surface of a A5052 aluminium alloy. Firstly, an applicability of diode laser to laser cladding was evaluated. In this result, application of diode laser made it possible to obtain stable beads in low heat input compared with CO2 laser. According to the increase in aluminium content in the obtained clad layer, the microstructure of the clad layer changed as γ (8∼20%) → γ + α (10∼30%) → Fe3Al (30%∼). At the interface between the clad layer and the aluminium alloy substrate, the reaction layer consisting of Fe2Al5 and FeAl3 formed. In the abrasion wear the obtained clad layers exhibited a higher wear resistance compared with the aluminium alloy.


2019 ◽  
Vol 33 (14n15) ◽  
pp. 1940037 ◽  
Author(s):  
Moo-Keun Song ◽  
Su-Han Park ◽  
Su-Jin Lee ◽  
Jong-Do Kim

In this study, experiments with various parameters were performed to apply laser cladding to the exhaust valve face of a marine engine and optimum conditions were derived. The used specimen was an actual exhaust valve, and the heat source was a high-power diode laser. Cladding was applied to the exhaust valve face using the optimum conditions, and a sound clad layer without internal defects, such as pores and cracks, was formed. The average hardness of the clad layer formed under the optimum conditions was higher than 529 Hv. Component analysis showed a very low dilution rate inside the clad layer.


2019 ◽  
Vol 956 ◽  
pp. 154-159 ◽  
Author(s):  
Hui Liang ◽  
Bing Yang Gao ◽  
Ya Ning Li ◽  
Qiu Xin Nie ◽  
Zhi Qiang Cao

For the purpose of expanding the application scope of HEA coating manufactured on the surface modification of materials, in this work, the Al1.5CrFeNiTi0.5 and Al1.5CrFeNiTi0.5W0.5 HEA coatings were successfully manufactured using laser cladding method on SUS304. The microstructures and wear resistance of coatings are researched systematically. It is found that the W0 and W0.5 HEA coatings all exhibit the dendritic structure, which are constituted by BCC phases and Laves phases. With W element addition, the phase structures of W0.5 coating remain unchanged. W is dissolved in both two phases, but the solid solubility in Laves phase is higher compared to that in BCC phase. W0.5 coating with the highest microhardness of 848.34 HV, and the W0 coating with the microhardness of 811.45 HV, both of whose microhardness are four times more than that of SUS304 substrate. Among all samples, the W0.5 coating shows the optimal wear performance because of its larger content of hard second phase ( Laves phase).


2008 ◽  
Vol 23 (7) ◽  
pp. 708-713 ◽  
Author(s):  
Shu-Shuo Chang ◽  
Hsieh-Chen Wu ◽  
Chun Chen

2015 ◽  
Vol 2015 ◽  
pp. 1-8
Author(s):  
Meiyan Li ◽  
Bin Han ◽  
Conghua Qi ◽  
Yong Wang ◽  
Lixin Song

The composite processing between laser cladding and low temperature (300°C) ion sulfurization was applied to prepare wear resistant and self-lubricating coating. The microstructure, morphology, phase composition, valence states, and wear resistance of the composite coating were investigated by scanning electron microscopy (SEM), atomic force microscope (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscope (XPS), and friction and wear apparatus. The results indicate that the laser cladding Ni-based coatings and the maximum hardness of 46.5 HRC were obtained when the percent of pure W powder was 10%, composed of columnar dendrites crystals and ultrafine dendritic structure. After ion sulfurization at 300°C for 4 h, the loose and porous composite coating is formed with nanograins and the granularity of all grains is less than 100 nm, which consists ofγ-(Fe, Ni), M23C6carbides, FeS, FeS2, and WS2. Furthermore, the wear resistance of the composite coating is better than the laser cladding Ni55 + 10%W coating, and the friction coefficient and mass losses under the conditions of dry and oil lubrication are lower than those of laser cladding Ni55 + 10%W coating.


1998 ◽  
Vol 64 (5) ◽  
pp. 763-767
Author(s):  
Hiromi Nagakura ◽  
Kazuhiro Nakata ◽  
Yosioki Honda ◽  
Shogo Tomida

2019 ◽  
Vol 116 (6) ◽  
pp. 634 ◽  
Author(s):  
Samar Reda Al-Sayed Ali ◽  
Abdel Hamid Ahmed Hussein ◽  
Adel Nofal ◽  
Salah Ibrahim Hassab Elnaby ◽  
Haytham Elgazzar

A wear resistant coating was successfully made on an annealed Ti-6Al-4V titanium alloy by laser surface cladding using 60 wt.% WC + wt.% 40 NiCrBSi powder blends. Coaxial laser cladding was performed by means of Yb:YAG disk laser with a 3-KW continuous wave. Different laser interaction times were attempted to get the optimal conditions for promising mechanical properties. The new contribution was to accomplish larger clad layer thickness with applying the shortest possible laser interaction time that can achieve superior clad layer properties. This will decrease energy consumption with an expected money saving which is an essential factor for successful engineering solutions. A high powder flow rate of 20 g.min−1 was intended in order to obtain a thick, nonporous and crack free clad layer. The clad samples were subjected to thorough microstructure investigations, in addition to microhardness and wear evaluation. The coating so produced exhibits multiple hardness values and exceptional wear resistance under adhesive/sliding wear conditions. The obtained results expose clad layer with superior quality that was achieved at a laser interaction time of 0.3 s. An enhancement in the microhardness values of the clad layers by more than fourfold was attained and the wear resistance was thus significantly improved.


Sign in / Sign up

Export Citation Format

Share Document