Photodiode-Based In-Process Monitoring of Part-to-Part Gap and Weld Penetration Depth in Remote Laser Welding of Copper-to-Steel Battery Tab Connectors

Author(s):  
Giovanni Chianese ◽  
Pasquale Franciosa ◽  
Jonas Nolte ◽  
Darek Ceglarek ◽  
Stanislao Patalano

Abstract This paper addresses in-process monitoring of part-to-part gap and weld penetration depth using photodiode-based signals during Remote Laser Welding (RLW) of battery tab connectors. Photodiode-based monitoring has been largely implemented for structural welds due to its relatively low cost and ease of automation. However, the application of photodiode-based monitoring to RLW of thin foils of dissimilar metals for battery tab connectors remains an unexplored area of research and will be addressed in this paper. Motivated by the high variability during the welding process of thin foils of dissimilar metals, this paper aims to evaluate the photodiode-based signals to determine if variations in weld quality can be isolated and diagnosed. The main focus is in diagnosing defective weld conditions caused by part-to-part gap variations and/or excessive weld penetration depth. Photodiode-based signals have been collected during RLW of copper-to-steel thin foils lap joint (Ni-plated copper 300 μm to Ni-plated steel 300 μm). The methodology is based on the evaluation of the energy intensity and scatter level of the signals. The energy intensity gives information about the amount of radiation emitted during the welding process, and the scatter level is associated to the accumulated and un-controlled variations. Findings indicated that part-to-part gap variations can be diagnosed by observing the step-change in the plasma signal, with no significant contribution given by the back-reflection. Results further suggested that over-penetration corresponds to significant increment of the scatter level in the sensor signals. Opportunities for automatic isolation and diagnosis of defective welds based on supervised machine learning will be discussed throughout the paper.

Author(s):  
Giovanni Chianese ◽  
Pasquale Franciosa ◽  
Jonas Nolte ◽  
Dariusz Ceglarek ◽  
Stanislao Patalano

Abstract This paper addresses sensor characterization to detect variations in part-to-part gap and weld penetration depth using photodiode-based signals during Remote Laser Welding (RLW) of battery tab connectors. Photodiode-based monitoring has been implemented largely for structural welds due to its relatively low cost and ease of automation. However, research in sensor characterization, monitoring and diagnosis of weld defects during joining of battery tab connectors is at an infancy and results are inconclusive. Motivated by the high variability during the welding process of dissimilar metallic thin foils, this paper aims to characterize the signals generated by a photodiode-based sensor to determine whether variations in weld quality can be isolated and diagnosed. Photodiode-based signals were collected during RLW of copper-to-steel thin-foil lap joint (Ni-plated copper 300 μm to Ni-plated steel 300 μm). The presented methodology is based on the evaluation of the energy intensity and scatter level of the signals. The energy intensity gives information about the amount of radiation emitted during the welding process, and the scatter level is associated with the accumulated and un-controlled variations. Findings indicated that part-to-part gap variations can be diagnosed by observing the step-change in the plasma signal, with no significant contribution given by the back-reflection. Results further suggested that over-penetration corresponds to significant increment of the scatter level in the sensor signals. Opportunities for automatic isolation and diagnosis of defective welds based on supervised machine learning are discussed.


Author(s):  
Wei Huang ◽  
Radovan Kovacevic

During the laser welding process of high-strength steels, different defects, such as a partial weld penetration, spatters, and blow-through holes could be present. In order to detect the presence of defects and achieve a quality control, acoustic monitoring based on microphones is applied to the welding process. As an effective sensor to monitor the laser welding process, however, the microphone is greatly limited by intensive noise existing in the complex industrial environment. In this paper, in order to acquire a clean acoustic signal from the laser welding process, two noise reduction methods are proposed: one is the spectral subtraction method based on one microphone and the other one is the beamforming based on a microphone array. By applying these two noise reduction methods, the quality of the acoustic signal is enhanced, and the acoustic signatures are extracted both in the time domain and frequency domain. The analysis results show that the extracted acoustic signatures can well indicate the different weld penetration states and they can also be used to study the internal mechanisms of the laser-material interaction.


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1799 ◽  
Author(s):  
Jumyung Um ◽  
Ian Anthony Stroud ◽  
Yong-keun Park

Due to concerns about energy use in production systems, energy-efficient processes have received much interest from the automotive industry recently. Remote laser welding is an innovative assembly process, but has a critical issue with the energy consumption. Robot companies provide only the average energy use in the technical specification, but process parameters such as robot movement, laser use, and welding path also affect the energy use. Existing literature focuses on measuring energy in standardized conditions in which the welding process is most frequently operated or on modularizing unified blocks in which energy can be estimated using simple calculations. In this paper, the authors propose an integrated approach considering both process variation and machine specification and multiple methods’ comparison. A deep learning approach is used for building the neural network integrated with the effects of process parameters and machine specification. The training dataset used is experimental data measured from a remote laser welding robot producing a car back door assembly. The proposed estimation model is compared with a linear regression approach and shows higher accuracy than other methods.


2012 ◽  
Vol 233 ◽  
pp. 374-379 ◽  
Author(s):  
Zong Xiang Yao ◽  
De Ping Jiang ◽  
Chao Pan ◽  
Xiao Ming Wang

The research status of welding process between magnesium with steel have been surveyed.This article detailed the laser welding, Laser-TIG hybrid welding, pressure welding,diffusion brazing. The paper pointed out that it is a prominent problem of magnesium to be oxidated easily and existing intermetallic compound in the joint, which will produce adverse effect to property of welded joint. So how to control morphology and existence state of intermetallic compound (IMC) is the key for quality connectors in joining of magnesium with steel.


Sign in / Sign up

Export Citation Format

Share Document