Standing Wave-Induced Dynamic Response and Instability of Seabed Under a Caisson Breakwater

Author(s):  
M. B. C. Ulker ◽  
M. S. Rahman ◽  
M. N. Guddati

The wave-induced dynamic response and instability of the porous seabed and the rubble mound foundation under a composite caisson-type breakwater is studied using finite elements. In this study the focus is on the effect of inertial terms on the dynamic response and instability of the foundation material underneath the breakwater. It is assumed that a fully standing wave condition occurs in front of the caisson under the cyclic wave action and the dynamic response of the seabed and rubble mound is presented in terms of pore pressures and stresses induced around the breakwater. A complete formulation of the fully dynamic (FD) response requires inclusion of the inertial terms associated with both the motion of solid skeleton and that of pore fluid. However, partly dynamic (PD) and quasi-static (QS) idealizations are also possible. The objective of this study is to investigate the standing wave induced dynamic response and instability of seabed-rubble-breakwater system.

Author(s):  
M. B. C. Ulker ◽  
M. S. Rahman ◽  
M. N. Guddati

A finite element (FE) model is developed to study the breaking wave-induced dynamic response of the porous seabed and the rubble mound foundation under a composite caisson-type breakwater. The breaking wave impact pressure distributions on the front face of the breakwater are calculated using a recently proposed method. In this study the focus is on the dynamic response of the foundation materials underneath the breakwater. The impact response of the seabed and the rubble mound is presented in terms of pore pressure and shear stress induced around the breakwater. A complete formulation of the fully dynamic response requires inclusion of the inertial terms associated with both the motion of solid skeleton and that of pore fluid. However, partly dynamic and quasi-static idealizations are also possible. The objective of this study is to investigate the effects of the inertial terms on the breaking wave induced impact response of the seabed as well as the rubble. The effect of seabed saturation on the response from different formulations is also examined.


2010 ◽  
Vol 37 (17-18) ◽  
pp. 1522-1545 ◽  
Author(s):  
M.B.C. Ulker ◽  
M.S. Rahman ◽  
M.N. Guddati

1984 ◽  
pp. 309-315 ◽  
Author(s):  
N. W. Carlson ◽  
A. G. Yodh ◽  
T. W. Mossberg

2004 ◽  
Vol 25 (2) ◽  
pp. 153-158
Author(s):  
Md. Anwar Hossain ◽  
Masaaki Kawahashi ◽  
Tomoyoshi Nagakita ◽  
Hiroyuki Hirahara

2018 ◽  
Vol 144 (9) ◽  
pp. 06018008 ◽  
Author(s):  
Guocai Wang ◽  
Shengli Chen ◽  
Qianqian Liu ◽  
Yong Zhang

2007 ◽  
Vol 336-338 ◽  
pp. 335-337
Author(s):  
Xiang Cheng Chu ◽  
Ren Bo Yan ◽  
Wen Gong ◽  
Long Tu Li

The dynamic behavior of a vibration converter of an ultrasonic motor is described using finite element method. Tetrahedral finite elements with three dimensions are formulated with the effects of piezoelectric coupling. And the solution of the coupled electroelastic equations of dynamic motion is presented. The simulated response of the vibration converter is calculated, and shows excellent consistency with experimental results, which proved that finite element modeling is a good approach to optimize piezoelectric apparatus design. A gradual optimized method is employed to ascertain the most compatible structure.


Author(s):  
Knut Vedeld ◽  
Håvar Sollund ◽  
Olav Fyrileiv

Pipeline free span design has evolved from basic avoidance criteria in the DNV ’76 rules [1], to fatigue and ultimate limit state considerations in Guideline no. 14 [2]. Modern multimode, multi-span free span design is predominantly performed according to DNV-RP-F105 [3]. In 2006, the latest revision of DNV-RP-F105 [3] was written as a direct result of extensive research, performed due to significant free span challenges in the Ormen Lange pipeline project. DNV-RP-F105 was at the time, and still is, the only pipeline design code giving contemporary design guidance for vortex induced vibrations (VIV) and direct wave loading design for pipelines in free spans. The last revision of DNV-RP-F105 included a few, but highly important advances, particularly the consideration for multi-mode and multi-span pipeline dynamic response behavior. In the 10 years that have followed, no breakthroughs of similar magnitude have been achieved for pipeline free spans, but a large number of incremental improvements to existing calculation methods, and some novel advances in less critical aspects of VIV understanding have been made. As a result, DNV-RP-F105 has recently been revised to account for these advances, which include improved frequency-domain analyses of wave-induced fatigue, a new response model for cross-flow VIV in low Keulegan-Carpenter (KC) regimes in pure waves, new analytical methods for dynamic response calculations of short spans in harsh conditions, and extensive guidance on how to apply the recommended practice for assessment of fatigue and extreme environmental load effects on curved structural members such as spools, jumpers and manifold flexloops. This paper gives an overview of most of the important changes and updates to the new revision of DNV-RP-F105. Case studies are used to demonstrate the importance and effects of the changes made, and to some extent how the revision of DNV-RP-F105 can enhance its applicability and ease of use.


Sign in / Sign up

Export Citation Format

Share Document