Recent Advances in Pipeline Free Span Design: A New Revision of DNV-RP-F105

Author(s):  
Knut Vedeld ◽  
Håvar Sollund ◽  
Olav Fyrileiv

Pipeline free span design has evolved from basic avoidance criteria in the DNV ’76 rules [1], to fatigue and ultimate limit state considerations in Guideline no. 14 [2]. Modern multimode, multi-span free span design is predominantly performed according to DNV-RP-F105 [3]. In 2006, the latest revision of DNV-RP-F105 [3] was written as a direct result of extensive research, performed due to significant free span challenges in the Ormen Lange pipeline project. DNV-RP-F105 was at the time, and still is, the only pipeline design code giving contemporary design guidance for vortex induced vibrations (VIV) and direct wave loading design for pipelines in free spans. The last revision of DNV-RP-F105 included a few, but highly important advances, particularly the consideration for multi-mode and multi-span pipeline dynamic response behavior. In the 10 years that have followed, no breakthroughs of similar magnitude have been achieved for pipeline free spans, but a large number of incremental improvements to existing calculation methods, and some novel advances in less critical aspects of VIV understanding have been made. As a result, DNV-RP-F105 has recently been revised to account for these advances, which include improved frequency-domain analyses of wave-induced fatigue, a new response model for cross-flow VIV in low Keulegan-Carpenter (KC) regimes in pure waves, new analytical methods for dynamic response calculations of short spans in harsh conditions, and extensive guidance on how to apply the recommended practice for assessment of fatigue and extreme environmental load effects on curved structural members such as spools, jumpers and manifold flexloops. This paper gives an overview of most of the important changes and updates to the new revision of DNV-RP-F105. Case studies are used to demonstrate the importance and effects of the changes made, and to some extent how the revision of DNV-RP-F105 can enhance its applicability and ease of use.

2021 ◽  
Author(s):  
Joannes Gullaksen

Abstract The scope of this paper is to provide a method implemented in an application for assessment of dynamic response of free spanning pipelines subjected to combined wave and current loading. The premises for the paper are based on application development within pipeline free span evaluation in a software development project. A brief introduction is provided to the basic hydrodynamic phenomena, principles and parameters for dynamic response of pipeline free spans. The choice of method for static and dynamic span modelling has an influence on calculated modal frequencies and associated stresses. Due to the importance of frequencies and stresses for fatigue and environmental loading calculations, the choice of analysis approach influences the partial safety factor format. The aim of the structural analysis is to provide the necessary input to the calculations of VIV and force model response, and to provide realistic estimations of static loading from functional loads. Environmental flow conditions are implemented in the application, such as steady flow due to current, oscillatory flow due to waves and combined flow due to current and waves. Combined wave and current loading include the long-term current velocity distribution, short-term and long-term description of wave-induced flow velocity amplitude and period of oscillating flow at the pipe level and return period values. Inline and cross-flow vibrations are considered in separate response models. For pipelines and risers, modes are categorized in in-line or cross-flow direction. A force model is also considered for the short-term fatigue damage due to combined current and direct wave actions. Design criteria can be specified for ultimate limit state (ULS) and fatigue limit state (FLS) due to in-line and cross-flow vortex induced vibrations (VIV) and direct wave loading.


Author(s):  
Carl M. Larsen ◽  
Gro Sagli Baarholm ◽  
Halvor Lie

Helical strakes are known to reduce and even eliminate the oscillation amplitude of vortex induced vibrations (VIV). This reduction will increase fatigue life, and also reduce drag magnification from cross-flow vibrations. But sections with strakes will also have a larger drag coefficient than the bare riser. Hence, the extension of a section with strakes along a riser should be large enough to reduce oscillations, but not too long in order to limit drag forces from current and waves. The optimum length and position for a given riser will therefore vary with current profile. Dynamic response from waves should also be taken into account. The purpose of the present paper is to illustrate the influence from strakes on VIV, as well as on static and dynamic response for a drilling riser. Hydrodynamic coefficients for a cylinder with helical strakes are found from experiments and applied in an empirical model for the analysis of VIV. The result from the VIV analysis is used for a second calculation of drag forces that are applied in an updated static analysis. Dynamic stresses from regular waves are also presented, but VIV are not considered for these cases. A simple study of length and position of the section with strakes is carried out for some standard current profiles. Results are presented in terms of oscillation amplitudes, fatigue damage, bending stresses and riser angles at ends. The study is based on test data for one particular strake geometry, but the analysis method as such is general, and the computer programs used in the study can easily apply other test data.


Author(s):  
Aaron Dinovitzer ◽  
Sanjay Tiku ◽  
Vlado Semiga ◽  
Abdelfettah Fredj ◽  
Joe Zhou ◽  
...  

While the formation of a wrinkle in an onshore pipeline is an undesirable event, in many instances this event does not have immediate pipeline integrity implications. The magnitude or severity of a wrinkle formed due to displacement controlled loading processes (e.g. slope movement, fault displacement, frost heave and thaw settlement) may increase with time, eventually causing serviceability concerns (e.g. fluid flow or inspection restrictions). Pipe wall damage leading to cracking and eventually a loss of containment involves contributions from the wrinkle formation and growth processes, as well as, wrinkle deformations promoted by in-service line pressure, temperature and seasonal soil displacements. The objective of this paper is to provide an overview of the ongoing research efforts, sponsored by TransCanada PipeLines Ltd. and Tokyo Gas Co. Ltd., towards the development of a mechanics based wrinkle ultimate limits state that may be used in future to evaluate the long term integrity of wrinkled pipeline segments. The research efforts include non-linear finite element modeling to demonstrate the ability of experimentally derived material properties to predict the formation of through wall cracking induced by high and low frequency load effects. This paper outlines the material testing program used to support the development of failure criteria capable of considering the contributions of monotonic deformation, as well as, high and low cycle cyclic loading.


Author(s):  
Martin So̸reide

As offshore installations are moving into deeper water, engineers have to face new challenges in design of structures. Risers and free-span pipelines, subjected to heavy wave loads and large current velocities, are important components of these installations. Vortex induced vibrations (VIV) is a well known subject for most offshore engineers. VIV can cause large stresses and fatigue damage of slender marine structures. Hence, large safety factors are applied to the fatigue limit state design criterion (FLS), due to uncertainties regarding VIV. The present paper describes the preliminary investigation into the coupling between in-line and cross-flow VIV response. Most experimental data so far has been concentrated on predicting the cross-flow response. However, in-line displacements can make a valuable contribution. In fact, it has been proved that in-line responses may decrease the cross-flow response significantly when allowing the pipe to oscillate in both directions. The paper is based on a master of science thesis at the Norwegian University of Science and Technology (NTNU).


Author(s):  
M. Liu ◽  
C. Cross

The industry consensus would appear that the effect of currents on wave-induced fatigue damage accumulation is assumed as insignificant and can be ignored. Only when dealing with stability, ultimate limit state design, and vortex-induced vibration (VIV), is the recommended industry practice to consider both currents and waves simultaneously, except for fatigue design. This paper presents a study on how environmental loads should be considered in terms of currents and waves for the fatigue life design of offshore pipelines and risers. The study is intended as a spur to redress the misapprehension by focusing on the coupling effect of direct waves and currents in the context of fatigue damage assessment. It is demonstrated unequivocally that waves and currents cannot be decoupled for fatigue design assessments. Wave-induced fatigue with the inclusion of currents is manifested twofold, not only the increased mean stress correction effect but also higher total damage accumulation due to elevated stress ranges. The practice of using wave histograms while ignoring currents is shown to result in an unacceptable nonconservative fatigue design. Both effects should be accounted for in the engineering assessment. A first-order correction factor involving the ratio of current and wave velocities is introduced to evaluating the environmental load coupling effect. It is recognized that fatigue associated specifically with VIV phenomena is well understood and documented elsewhere, its discussion is thus out with the aims of this paper.


1993 ◽  
Vol 115 (4) ◽  
pp. 237-245 ◽  
Author(s):  
R. G. Bea

This paper summarizes results from a Canadian Standards Association (CSA) sponsored study of the uncertainties associated with extreme (1000 to 10,000-yr return periods) environmental loadings acting on offshore structures (Bea, 1991). The evaluations of the loadings addressed loading effects that resulted from dynamic and nonlinear interactions of the structures. Loading uncertainties were organized and characterized in two categories: 1) inherent randomness (aleatory uncertainty), and 2) analytical variability (epistemic uncertainty). The study addressed the global ultimate limit state performance of three structures designed according to the provisions of the draft CSA guidelines (1989a, 1989b) for offshore structures: 1) a concrete Gravity Base Structure (GBS) located off the East coast of Canada (Hibernia), 2) a steel pile template located on the Scotian Shelf off Sable Island, and 3) a caisson retained island located in the Mackenzie Delta area of the Beaufort Sea (Amuligak). The results of this study indicate that, based on presently available information and data, it is often not possible to develop unambiguous characterizations of uncertainties. The different technical communities that background environmental conditions and forces (storms, earthquakes, ice) recognize and integrate these uncertainties into loading characterizations in different ways. In many cases, major sources of uncertainty are not included in probabilistic characterizations. Because of the needs for design code information sensitivity and consistency in demonstrating compliance with target reliability goals, there is a need for well-organized and definitive evaluations of uncertainties in extreme environmental loadings and load effects (Bitner-Gregersen et al., 1993).


Author(s):  
Paulo Mauricio Videiro ◽  
Luis Volnei Sudati Sagrilo

This paper compares two approaches for the estimation of long-term response of wave load effects on offshore structures. These approaches are applied to estimate the extreme value of the cross section interaction ratio of a tubular component of the bracing system of a semisubmersible platform. The tubular component is subjected to axial loads and bending moments due to static loads and wave effects. The iteration ratio in the ultimate limit state is defined by applying design criteria derived from API RP-2A LRFD [6]. The approaches are also applied to estimate the long-term response of a single degree of freedom system due to wave actions. The first approach is based on the proposals of Videiro and Moan [3]. The results of the first approach are compared with a new model of long-term response estimation, based on the up-crossing rate distribution of the response process.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Knut Andreas Kvåle ◽  
Ole Øiseth

Herein, numerical predictions of the dynamic response of an existing floating pontoon bridge are compared with the measured dynamic response. Hydrodynamic coefficients that describe the fluid-structure interaction and the wave transfer functions are obtained by applying linear potential theory. The results obtained from the hydrodynamic analysis are combined with a beam model of the bridge in a finite element method (FEM) framework to enable stochastic response prediction through the power spectral density method. The standard deviations of the predicted accelerations are compared with the standard deviations of the measured accelerations, and the overall quality of the prediction model is discussed. Predictions with sea states related to the serviceability limit state (SLS) and ultimate limit state (ULS) conditions used in design of the bridge are emphasized. To investigate the behaviour more in depth, a measurement segment is chosen and predictions of the displacement response power spectral density due to excitation characterized by the recorded sea surface elevation are compared with those obtained from the corresponding response measurements. A decent agreement is obtained for both cases when using the model as it is and with waves as the only excitation source, but significant discrepancies are present, in particular, for the torsional components. By including preliminary contributions from wind action and relying on a model optimized against measured modal parameters, a satisfactory agreement is obtained. The effect on the response of an uncertain structural damping is also quantified and concluded to be significant within realistic damping levels.


Author(s):  
Federico Barranco Cicilia ◽  
Edison Castro Prates de Lima ◽  
Lui´s Volnei Sudati Sagrilo

This paper presents a Load and Resistance Factor Design (LRFD) criterion applied to the design of Tension Leg Platform (TLP) tendons in their intact condition. The design criterion considers the Ultimate Limit State (ULS) of any tendon section along its whole length taking into account both dynamic interactions of load effects and the statistics of its associated extreme response. The partial safety factors are calibrated through a long-term reliability-based methodology for the storm environmental conditions, like hurricanes and winter storms, in deep waters of the Campeche Bay, Mexico. In the reliability analysis, the uncertainties in the definition of load effects and analytic limit state models for calculation of tendon strength and randomness of material properties are included. The results show that the partial safety factors reflect both uncertainty content and the importance of the random variables in structural reliability analysis. When tendons are designed according to the developed LRFD criterion, a less scattered variation of reliability indexes is obtained for different tendon sections across a single or various TLP designs.


Author(s):  
Rony Peterson Ferreira ◽  
Claudia Albergario Claro ◽  
Nelson Szilard Galgoul

During the last 20 years the Dn V code [1–5] has represented the latest word in design recommendations for pipeline free span evaluations. This is true to the extent that important codes, such as API RP 1111 [6], simply refer to Dn V for further guidelines. During most of these 20 years the majority of the design codes which did have anything to say about vibrations due to vortex shedding, including Dn V, had and in general still have, dissociated axial pipeline forces from the vortex shedding problem. It is well known, however, that the natural period of a compressed element increases as does also the axial compressive force. In March, 2002 Dn V released a new free span recommended practice [5], in which an attempt was made to couple the global free span buckling problem and that of vortex induced vibrations. All those of the pipeline engineering market, who have attempted to use it, will certainly agree that this code has greatly improved the pipeline free span ultimate limit state and fatigue design by introducing more general procedures associated to more sophisticated numerical techniques. Later that same year the authors undertook a large project, in which the use of the aforementioned code was a contractual requirement. If on one hand, however, the owner insisted upon the use of the new Dn V code, on the other he was not willing to accept the very short free span limits, which were resulting from the calculations. This does not necessarily imply that the new code was wrong, because it could be, that previous codes had overestimated the allowable spans, but, in addition to the short spans, it was also found that the new code has some limits of applicability, which, basically, exclude a large range of common pipeline sizes. Because of this the authors were forced to look at the problem in further depth, thus resulting interesting conclusions, which will be presented in this paper. These point out some conservative aspects of the code, and make suggestions as to how these can be overcome in order to use the Dn V safety approach and still produce larger spans, by properly focusing on the frees pan buckling problem.


Sign in / Sign up

Export Citation Format

Share Document