Higher Order Wave-Current Elevations in Deep Water

Author(s):  
Anne Katrine Bratland ◽  
Ragnvald Bo̸rresen ◽  
Per Ivar Barth Berntsen

Wave-current interaction refers to the interaction between surface gravity waves and ocean current flow. This interaction implies an exchange of energy, i.e. both the waves and the current are affected. The present paper describes the calculation of wave elevations in higher order unidirectional, irregular waves with a uniform current in deep water. Results for regular waves are compared with those obtained for Stokes second and third order waves with uniform current according to the method described by Fenton [1]. The results for higher order wave elevations in irregular waves have been compared with waves and current generated in a model test basin and reasonable agreement has been found.

Author(s):  
Jesper Skourup ◽  
Martin J. Sterndorff

A method for deterministic reproduction of non-linear long-crested waves has been implemented. The model is used for non-linear reproduction of measured wave time series from a model test programme in a wave flume. Regular waves, irregular waves and focused waves have been reproduced with the model. Based on measured surface elevation time series at one location in the flume the elevation time series and the kinematics have been reproduced at another location using both linear theory and the second order model. The numerical results have been compared with measurements and it is found that the second order model is able to reproduce the correct shape of the waves as they propagate in the flume — even when the waves are highly non-linear.


2021 ◽  
Vol 9 (2) ◽  
pp. 114
Author(s):  
Dag Myrhaug ◽  
Muk Chen Ong

This article derives the time scale of pipeline scour caused by 2D (long-crested) and 3D (short-crested) nonlinear irregular waves and current for wave-dominant flow. The motivation is to provide a simple engineering tool suitable to use when assessing the time scale of equilibrium pipeline scour for these flow conditions. The method assumes the random wave process to be stationary and narrow banded adopting a distribution of the wave crest height representing 2D and 3D nonlinear irregular waves and a time scale formula for regular waves plus current. The presented results cover a range of random waves plus current flow conditions for which the method is valid. Results for typical field conditions are also presented. A possible application of the outcome of this study is that, e.g., consulting engineers can use it as part of assessing the on-bottom stability of seabed pipelines.


2020 ◽  
Vol 39 (1) ◽  
pp. 25-40
Author(s):  
Jingling Yang ◽  
Shaocai Jiang ◽  
Junshan Wu ◽  
Lingling Xie ◽  
Shuwen Zhang ◽  
...  

1971 ◽  
Vol 50 (2) ◽  
pp. 321-334 ◽  
Author(s):  
James Witting

The average changes in the structure of thermal boundary layers at the surface of bodies of water produced by various types of surface waves are computed. the waves are two-dimensional plane progressive irrotational waves of unchanging shape. they include deep-water linear waves, deep-water capillary waves of arbitrary amplitude, stokes waves, and the deep-water gravity wave of maximum amplitude.The results indicate that capillary waves can decrease mean temperature gradients by factors of as much as 9·0, if the average heat flux at the air-water interface is independent of the presence of the waves. Irrotational gravity waves can decrease the mean temperature gradients by factors no more than 1·381.Of possible pedagogical interest is the simplicity of the heat conduction equation for two-dimensional steady irrotational flows in an inviscid incompressible fluid if the velocity potential and the stream function are taken to be the independent variables.


Author(s):  
Stefan Daum ◽  
Martin Greve ◽  
Renato Skejic

The present study is focused on performance issues of underwater vehicles near the free surface and gives insight into the analysis of a speed loss in regular deep water waves. Predictions of the speed loss are based on the evaluation of the total resistance and effective power in calm water and preselected regular wave fields w.r.t. the non-dimensional wave to body length ratio. It has been assumed that the water is sufficiently deep and that the vehicle is operating in a range of small to moderate Froude numbers by moving forward on a straight-line course with a defined encounter angle of incident regular waves. A modified version of the Doctors & Days [1] method as presented in Skejic and Jullumstrø [2] is used for the determination of the total resistance and consequently the effective power. In particular, the wave-making resistance is estimated by using different approaches covering simplified methods, i.e. Michell’s thin ship theory with the inclusion of viscosity effects Tuck [3] and Lazauskas [4] as well as boundary element methods, i.e. 3D Rankine source calculations according to Hess and Smith [5]. These methods are based on the linear potential fluid flow and are compared to fully viscous finite volume methods for selected geometries. The wave resistance models are verified and validated by published data of a prolate spheroid and one appropriate axisymmetric submarine model. Added resistance in regular deep water waves is obtained through evaluation of the surge mean second-order wave load. For this purpose, two different theoretical models based on potential flow theory are used: Loukakis and Sclavounos [6] and Salvesen et. al. [7]. The considered theories cover the whole range of important wavelengths for an underwater vehicle advancing in close proximity to the free surface. Comparisons between the outlined wave load theories and available theoretical and experimental data were carried out for a submerged submarine and a horizontal cylinder. Finally, the effective power and speed loss are discussed from a submarine operational point of view where the mentioned parameters directly influence mission requirements in a seaway. All presented results are carried out from the perspective of accuracy and efficiency within common engineering practice. By concluding current investigations in regular waves an outlook will be drawn to the application of advancing underwater vehicles in more realistic sea conditions.


2010 ◽  
Vol 2010 ◽  
pp. 1-20 ◽  
Author(s):  
Kun-Wen Wen ◽  
Gen-Qiang Wang ◽  
Sui Sun Cheng

Solutions of quite a few higher-order delay functional differential equations oscillate or converge to zero. In this paper, we obtain several such dichotomous criteria for a class of third-order nonlinear differential equation with impulses.


1976 ◽  
Vol 1 (15) ◽  
pp. 143 ◽  
Author(s):  
John Dorrington Mettam

In March 1972 the author's firm in association with two Portuguese firms of consulting engineers, Consulmar and Lusotecna, were appointed by the Portuguese Government agency Gabinete da Area de Sines to prepare designs for the construction of a new harbour at Sines on the west coast of Portugal. The location is shown in Figure 1. The main breakwater, which is the subject of this paper, is probably the largest breakwater yet built, being 2 km long and in depths of water of up to 50 m. It is exposed to the North Atlantic and has been designed for a significant wave height of 11 m. Dolos units invented by Merrifield (ref. 1) form the main armour. The project programme required that studies be first made of a wide range of alternative layouts for the harbour. After the client had decided on the layout to be adopted, documents were to be prepared to enable tenders for construction to be invited in January 1973. This allowed little time for the design to be developed and only one series of flume tests, using regular waves, was completed during this period. Further tests in the regular flume were completed during the tender period and a thorough programme of testing with irregular waves was commenced later in the year, continuing until August 1974 when the root of the breakwater was complete and the construction of the main cross-section was about to start. The model tests, which were carried out at the Laboratorio Nacional de Engenharia Civil in Lisbon, were reported by Morals in a paper presented to the 14th International Coastal Engineering Conference in 1974. (ref. 2)


Sign in / Sign up

Export Citation Format

Share Document