Fatigue Life Extension of Offshore Structures by Ultrasonic Peening

Author(s):  
Luis Lopez Martinez

The service life of offshore installations is limited by its structural integrity. Furthermore the structural integrity is mainly governed by the fatigue resistance of critical welded details. In a FPSO installation these details are among others pallet stools weld joints to deck structure and bulkheads/web frames weld connections to longitudinal in ballast tanks. ultrasonic peening can improve the fatigue resistance of welded joints. Fatigue test results shows an increase of four times for high stress ranges and up to ten times for high cycle fatigue. For specimens which have already consumed half of their fatigue life the treatment resets the clock to zero, as a minimum value. Consequently ultrasonic peening treatment was applied to several offshore installations on fatigue sensitive weld connections with the objective to extend the service life of the these. Finite Element Analysis carried out by classification societies for these offshore structures demonstrated critical fatigue lives for several weld connections. These weld connections were then treated by ultrasonic peening with the objective to extend their fatigue lives and by doing that reach the targeted service life for the installation. The successful application of the ultrasonic peening treatment was a pioneering work which involved several partners. A pilot project on a FPSO started in 2005 and the treated critical weld connections are still intact and show not sign of crack initiation despite the fact the calculations then showed shorter fatigue lives than the life span already consumed. As a result the same ultrasonic peening procedure has been proposed to be applied for other fatigue sensitive locations on the installation. Offshore installations around the world are reaching their original design life. Most of the operators chose to extend the service life of their assets rather than scrape them and build new. The reasons for that are: improved oil recovering techniques, time required to get a new build installation on site, environment concerns, wiser management of energy and resources among others. Therefore the Life Extension of Offshore Installations is a subject of current interest for the upstream industry.

Author(s):  
Abe Nezamian ◽  
Robert J. Nicolson ◽  
Dorel Iosif

A large number of the old oil and gas facilities have reached or exceeded their initial design life. With a continued requirement to produce oil or gas, either from the original fields or as a base for neighbouring subsea completions, many of these respective offshore installations are likely to remain operational for a period of time in the foreseeable future. The ageing offshore infrastructure presents a constant and growing challenge. Ageing is characterised by deterioration, change in operational conditions or accidental damages which, in the severe operational environment offshore, can be significant with serious consequences for installation integrity if not managed adequately and efficiently. In order to ensure technical and operational integrity of these ageing facilities, the fitness for service of these offshore structures should be maintained. The maintenance of structural integrity is a significant consideration in the safety management and life extension of offshore installations. Detailed integrity assessments are needed to demonstrate that there is sufficient technical, operational and organisational integrity to continue safe operation throughout a life extension. Information on history, characteristic data, condition data and inspection results are required to assess the current state and to predict the future state of the facility and the possible life extension. This paper presents state of art practices in life extension of existing offshore structures and an overview of various aspects of ageing related to offshore facilities, represented risk to the integrity of a facility and the required procedures and re assessment criteria for deciding on life extension. This paper also provides an overall view in the structural requirements, justifications and calibrations of the original design for the life extension to maintain the safety level by means of a maintenance and inspection programs balancing the ageing mechanisms and improving the reliability of assessment results.


2014 ◽  
Vol 69 (7) ◽  
Author(s):  
Ajith Kumar Thankappan ◽  
M. Fazli B. M. Yusof

This paper highlights the key differences in practices employed in managing hull structure integrity of permanently moored floating offshore structures as against sailing vessels which are subject to periodic dry docking. During the design phase, the structural integrity management over the life of a sailing vessel is primarily taken into account by means of Class prescribed Nominal Design Corrosion Values which are added to minimum scantling requirements calculated based on strength and fatigue criteria. In contrast, for permanently moored offshore installations like FPSOs, FSOs etc. the hull structure integrity over the entire design life of the asset is a key design consideration both for new buildings and conversions. Analytic methods and tools (primarily those developed by Class Societies) are available to evaluate the strength requirements (based on yielding, buckling and ultimate strength criteria) and fatigue life of the hull structure. Typically three levels of analysis with increasing degree of complexity and analysis time are used to predict the structural response and fatigue life of the Hull during design phase. The degree of detailed analysis required needs to be determined in light of the expected optimization in terms of savings in scantlings for new building or for steel renewal requirements in case of conversions.


Author(s):  
Abe Nezamian ◽  
Joshua Altmann

The ageing of offshore infrastructure presents a constant and growing challenge for operators. Ageing is characterised by deterioration, change in operational conditions or accidental damages which, in the severe operational environment offshore, can be significant with serious consequences for installation integrity if not managed adequately and efficiently. An oil field consisting of twelve well head platforms, a living quarter platform (XQ), a flare platform (XFP) and a processing platform (XPA) are the focus of this paper, providing an overview of the integrity assessment process. In order to ensure technical and operational integrity of these ageing facilities, the fitness for service of these offshore structures needs to be maintained. Assessments of the structural integrity of thirteen identified platforms under existing conditions were undertaken as these platforms are either nearing the end of their design life or have exceeded more than 50% of their design life. Information on history, characteristic data, condition data and inspection results were collected to assess the current state and to predict the future state of the facility for possible life extension. The information included but was not limited to as built data, brown fields modifications, additional risers and clamp-on conductors and incorporation of subsea and topside inspection findings. In-service integrity assessments, pushover analyses, corrosion control and cathodic protection assessments and weight control reports were completed to evaluate the integrity of these facilities for requalification to 2019 and life extension to 2030. The analytical models and calculations were updated based on the most recent inspection results and weight control reports. A requalification and life extension report was prepared for each platform to outline the performance criteria acceptance to achieve requalification until 2019 and life extension until 2030. This paper documents the methodology to assess the platform structural integrity in order to evaluate platform integrity for the remaining and extended design life. An overview of various aspects of ageing related to these offshore facilities, representing risk to the integrity, the required procedures and re assessment criteria for deciding on life extension of these facilities is presented. This paper also provides an overall view of the structural requirements, justifications and calibrations of the original design for the life extension to maintain the safety level by means of maintenance and inspection programs balancing the ageing mechanisms and improving the reliability of assessment results.


Author(s):  
J. V. Sharp ◽  
G. Ersdal ◽  
D. Galbraith

Key performance indicators (KPIs) are widely used to assess performance against targets, whether these be technical, environmental or financial. Offshore KPIs are used by both duty holders and regulators to assess the reliability of equipment and systems, often they relate to safety systems and the regulator’s interest relates to such systems. The most obvious KPIs include number of fatalities, fatal accident rate, lost time injury frequency and total recordable incident rate, as well as hydrocarbon release incident rates associated with maintaining safety. Many of the “non-headline” KPIs relate to systems that could be critical in the event of an accident and these are of great importance. However KPIs have not yet been developed for the performance of the offshore structural system. Performance standards are a requirement of current UK offshore legislation, although these again are more normally associated with fire and explosion. Since many offshore installations are now in the ageing phase performance measures are increasingly important. This paper described the background to developing KPIs for offshore structures, relating to aspects which are important for both safety and asset integrity. This has been achieved based on a hazard approach, which includes extreme weather, fatigue, corrosion and accidental damage. KPI’s need to be measurable and this aspect has been incorporated in their development. It is proposed that these KPIs will have significant use in providing a basis for measuring structural performance, particularly for ageing installations where a case for life extension needs to be made.


Author(s):  
A. Stacey ◽  
M. Birkinshaw ◽  
J. V. Sharp

With many offshore installations in the UK sector of the North Sea now reaching or being in excess of their original anticipated design life, there is a particular need to evaluate approaches to structural integrity management by offshore operators. Ageing processes can affect the structural integrity of the installation and demonstration of adequate performance beyond its original design life is thus a necessary requirement. This paper addresses the issues relevant to the life extension of ageing installations.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1249
Author(s):  
Yixun Wang ◽  
Yuxiao Luo ◽  
Yuki Kotani ◽  
Seiichiro Tsutsumi

The existing S-N curves by effective notch stress to assess the fatigue life of gusset welded joints can result in reduced accuracy due to the oversimplification of bead geometries. The present work proposes the parametric formulae of stress concentration factor (SCF) for as-welded gusset joints based on the spline model, by which the effective notch stress can be accurately calculated for fatigue resistance assessment. The spline model is also modified to make it applicable to the additional weld. The fatigue resistance of as-welded and additional-welded specimens is assessed considering the geometric effects and weld profiles. The results show that the error of SCFs by the proposed formulae is proven to be smaller than 5%. The additional weld can increase the fatigue life by as great as 9.4 times, mainly because the increasing weld toe radius and weld leg length lead to the smaller SCF. The proposed series of S-N curves, considering different SCFs, can be used to assess the welded joints with various geometric parameters and weld profiles.


Author(s):  
John V. Sharp ◽  
Edmund G. Terry ◽  
John Wintle

Many offshore installations in the North Sea have now exceeded their original design life and are in a life extension phase. A Framework of six processes has been developed for the management of ageing of Safety Critical Elements (SCEs) in offshore installations. The processes include an analysis of the effect of ageing modes on SCE performance. Examples of performance indicators for typical SCEs are proposed based on how their condition and performance as may be affected by physical deterioration and other effects of ageing. Indicators for calibrating the maturity and effectiveness of the management processes are also suggested.


Sign in / Sign up

Export Citation Format

Share Document