Fatigue Life Extension Procedure for Offshore Structures by Ultrasonic Peening

Author(s):  
Luis Lopez Martinez
Author(s):  
Luis Lopez Martinez

The service life of offshore installations is limited by its structural integrity. Furthermore the structural integrity is mainly governed by the fatigue resistance of critical welded details. In a FPSO installation these details are among others pallet stools weld joints to deck structure and bulkheads/web frames weld connections to longitudinal in ballast tanks. ultrasonic peening can improve the fatigue resistance of welded joints. Fatigue test results shows an increase of four times for high stress ranges and up to ten times for high cycle fatigue. For specimens which have already consumed half of their fatigue life the treatment resets the clock to zero, as a minimum value. Consequently ultrasonic peening treatment was applied to several offshore installations on fatigue sensitive weld connections with the objective to extend the service life of the these. Finite Element Analysis carried out by classification societies for these offshore structures demonstrated critical fatigue lives for several weld connections. These weld connections were then treated by ultrasonic peening with the objective to extend their fatigue lives and by doing that reach the targeted service life for the installation. The successful application of the ultrasonic peening treatment was a pioneering work which involved several partners. A pilot project on a FPSO started in 2005 and the treated critical weld connections are still intact and show not sign of crack initiation despite the fact the calculations then showed shorter fatigue lives than the life span already consumed. As a result the same ultrasonic peening procedure has been proposed to be applied for other fatigue sensitive locations on the installation. Offshore installations around the world are reaching their original design life. Most of the operators chose to extend the service life of their assets rather than scrape them and build new. The reasons for that are: improved oil recovering techniques, time required to get a new build installation on site, environment concerns, wiser management of energy and resources among others. Therefore the Life Extension of Offshore Installations is a subject of current interest for the upstream industry.


Author(s):  
Torfinn Hørte ◽  
Massimiliano Russo ◽  
Michael Macke ◽  
Lorents Reinås

Structural Reliability Analysis (SRA) methods have been applied to marine and offshore structures for decades. SRA has proven useful in life extension exercises and inspection planning of existing offshore structures. It is also a useful tool in code development, where the reliability level provided by the code is calculated by SRA and calibrated to a target failure probability. The current analysis methods for wellhead fatigue are associated with high sensitivity to variations in some input parameters. Some of these input parameters are difficult to assess, and sensitivity screening is often needed and the worst case is then typically used as a basis for the analysis. The degree of conservatism becomes difficult to quantify, and it is therefore equally difficult to find justification to avoid worst case assumptions. By applying SRA to the problem of wellhead fatigue, the input parameters are accounted for with their associated uncertainty given by probability distributions. In performing SRA all uncertainties are considered simultaneously, and the probability of fatigue failure is estimated and the conservatism is thereby quantified. In addition SRA also provides so-called uncertainty importance factors. These represent a relative quantification of which input parameter uncertainties contribute the most to the overall failure probability, and may serve well as guidance on where possible effort to reduce the uncertainty preferably should be made. For instance, instrumentation may be used to measure the actual structural response and thus eliminate the uncertainty that is associated with response calculations. Clearly measurements obtained from an instrumented system will have its own uncertainty. Other options could be to perform specific fatigue capacity testing or pay increased attention to logging of critical operational parameters such as the cement level in the annulus between the conductor and surface casing. This article deals with the use of measurements for fatigue life estimation. Continuous measurements of the BOP motion during the drilling operations have been obtained for a subsea well in the North Sea. These measurements are used both in conventional (deterministic) analysis and in SRA (probabilistic analysis) for fatigue in the wellhead system. From the deterministic analysis improved fatigue life results are obtained if the measured response replaces the response obtained by analysis. Furthermore, SRA is used to evaluate the appropriate magnitude of the design fatigue factor when fatigue analysis is based on measured response. It is believed that the benefit from measurements and SRA serve as an improved input to the decision making process in the event of life extension of existing subsea wells.


Author(s):  
Luis Lopez Martinez ◽  
Zuheir Barsoum ◽  
Anna Paradowska

The use of fatigue life improvement techniques and specifically ultrasonic peening treatment to extend the service life of offshore structures has become an accepted practice during the last five years. The understanding of the process as well as equipment’s upgrading for treatment in-situ including quality control and assurance have been developed up to a level that it has become a current practice in many parts of the world. However, the efficiency of the ultrasonic peening is strictly dependent on the deep understanding of significant fatigue parameters as weld defects, stress concentrations and residual stresses and their interaction. In this paper we attempt to present the current knowledge and the physical reasons why the ultrasonic peening treatment is able to improve the fatigue life of welded joints. The local weld geometry or stress concentration, weld imperfections as well as welding residual stresses are all modified and improved by the application of ultrasonic peening. Local weld geometry and weld process inherent weld imperfections are the factors primarily influencing the fatigue strength in welded joints. Comprehensive studies have been carried out during the last 20 years in order to detect and document the weld defects as well as to understand their origin and effect on the fatigue strength of welds. Analogous efforts have been dedicated to understand and document the influence of local weld geometries on the stress concentrations and its influence on endurance and structural integrity. Similarly, efforts have been done to understand the influence of the relaxation by external loads of the by the ultrasonic peening treatment induced compressive stresses. Fatigue test results of ultrasonic peening treated relevant weld details have been used to assess the potential life extension. The results showed four to six times fatigue life extension. The spectrum fatigue test was designed to confirm that relaxation by service loads of the induced compressive stresses during ultrasonic peening treatment would not diminish the benefit.


Author(s):  
Arvind Keprate ◽  
R. M. Chandima Ratnayake

A significant number of offshore structures and mechanical items installed in production systems on the Norwegian Continental Shelf (NCS) are either approaching or have exceeded their intended design life. However, with the help of the advancement of technology and analysis approaches, most of the offshore production facilities are being considered for life extension. This requires regular inspection, fitness for service (FFS) assessment, remnant life assessment, maintenance and repair (or modification). In this context, fatigue and fracture related degradation play a vital role. Hence, this paper discusses the state of the art as well as two major methodologies used for fatigue life prediction of structures and mechanical items. The first (S-N approach) is based on experimentally derived S-N curves and linear damage rule (LDR). Since LDR does not take sequence effect of loading into account the S-N approach often leads to overestimation / underestimation of fatigue life. Hence, this paper also takes into simultaneous consideration the second approach, which relies on the principles of fracture mechanics (FM) and crack growth analysis. Furthermore, the paper discusses damage tolerance analysis (DTA) and the role of Risk Based Inspection (RBI) to detect cracks before they grow to a critical level and cause catastrophic failure of the component. Thereafter, the paper discusses the reliability of Non-Destructive Evaluation (NDE) methods quantified in terms of Probability of Detection (PoD), to identify the flaw size and location. Finally, probabilistic crack growth (PCG) models used for remaining useful life estimation (RULE) and for planning inspection regimes of structural and mechanical items are discussed briefly.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2331
Author(s):  
Yixun Wang ◽  
Yuxiao Luo ◽  
Yuki Kotani ◽  
Seiichiro Tsutsumi

The authors wish to revise in the text of Appendix A, pages 19–21 [...]


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1249
Author(s):  
Yixun Wang ◽  
Yuxiao Luo ◽  
Yuki Kotani ◽  
Seiichiro Tsutsumi

The existing S-N curves by effective notch stress to assess the fatigue life of gusset welded joints can result in reduced accuracy due to the oversimplification of bead geometries. The present work proposes the parametric formulae of stress concentration factor (SCF) for as-welded gusset joints based on the spline model, by which the effective notch stress can be accurately calculated for fatigue resistance assessment. The spline model is also modified to make it applicable to the additional weld. The fatigue resistance of as-welded and additional-welded specimens is assessed considering the geometric effects and weld profiles. The results show that the error of SCFs by the proposed formulae is proven to be smaller than 5%. The additional weld can increase the fatigue life by as great as 9.4 times, mainly because the increasing weld toe radius and weld leg length lead to the smaller SCF. The proposed series of S-N curves, considering different SCFs, can be used to assess the welded joints with various geometric parameters and weld profiles.


1975 ◽  
Vol 101 (12) ◽  
pp. 2591-2608 ◽  
Author(s):  
Harold S. Reemsnyder
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document