Density and Drag Reduction With Hollow Glass Additives

Author(s):  
Bahri Kutlu ◽  
Evren M. Ozbayoglu ◽  
Stefan Z. Miska ◽  
Nicholas Takach ◽  
Mengjiao Yu ◽  
...  

This study concentrates on the use of materials known as hollow glass spheres, also known as glass bubbles, to reduce the drilling fluid density below the base fluid density without introducing a compressible phase to the wellbore. Four types of lightweight glass spheres with different physical properties were tested for their impact on rheological behavior, density reduction effect, survival ratio at elevated pressures and hydraulic drag reduction effect when mixed with water based fluids. A Fann75 HPHT viscometer and a flow loop were used for the experiments. Results show that glass spheres successfully reduce the density of the base drilling fluid while maintaining an average of 0.93 survival ratio, the rheological behavior of the tested fluids at elevated concentrations of glass bubbles is similar to the rheological behavior of conventional drilling fluids and hydraulic drag reduction is present up to certain concentrations. All results were integrated into hydraulics calculations for a wellbore scenario that accounts for the effect of temperature and pressure on rheological properties, as well as the effect of glass bubble concentration on mud temperature distribution along the wellbore. The effect of drag reduction was also considered in the calculations.

2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Bahri Kutlu ◽  
Nicholas Takach ◽  
Evren M. Ozbayoglu ◽  
Stefan Z. Miska ◽  
Mengjiao Yu ◽  
...  

This study concentrates on the use of materials known as hollow glass spheres, also known as glass bubbles, to reduce the drilling fluid density below the base fluid density without introducing a compressible phase to the wellbore. Four types of lightweight glass spheres with different physical properties were tested for their impact on rheological behavior, density reduction effect, survival ratio at elevated pressures, and hydraulic drag reduction effect when mixed with water-based fluids. A Fann75 high pressure high temperature (HPHT) viscometer and a flow loop were used for the experiments. Results show that glass spheres successfully reduce the density of the base drilling fluid while maintaining an average of 0.93 survival ratio, the rheological behavior of the tested fluids at elevated concentrations of glass bubbles is similar to the rheological behavior of conventional drilling fluids and hydraulic drag reduction is present up to certain concentrations. All results were integrated into hydraulics calculations for a wellbore scenario that accounts for the effect of temperature and pressure on rheological properties, as well as the effect of glass bubble concentration on mud temperature distribution along the wellbore. The effect of drag reduction was also considered in the calculations.


Author(s):  
O. Kirgil ◽  
E. Ozbayoglu ◽  
S. Miska ◽  
M. Yu ◽  
N. Takach ◽  
...  

The objective of this study is to investigate flow behavior and survival ratio of different fluids with Hollow Glass Microspheres (HGM) as they pass through jet nozzles under various flow conditions. Three types of HGM with different compressive strengths (5,000 – 19,000 psi) and specific gravities (0.38 – 0.46) for 10% and 30% volumetric concentrations were tested under 196 – 345 ft/s average fluid velocities from 0.5 – 1.5 inch standoff distances during impact tests using a new High Shear Rate Facility (HSRF). Density measurements before and after each circulation cycle were used for calculating survival ratio of the HGM. Particle size analysis was carried out to see the change in the size distribution of HGM after impact experiments. A scanning electron microscope (SEM) was used to view samples of HGM from before and after impact tests to define breakage behavior. The Hertz Impact Law was used to build a mechanistic model to estimate survival ratio under several assumptions. An empirical equation was developed and compared with experimental results. Breakage type is the result of cyclic fatigue because breakage does not occur in one circulation. Standoff distance, concentration of HGM and velocity of the fluid are strong parameters of the survival ratio function. Size distribution analysis and SEM microphotographs show that larger HGM break first.


2021 ◽  
Vol 11 (9) ◽  
pp. 3869
Author(s):  
Chen Niu ◽  
Yongwei Liu ◽  
Dejiang Shang ◽  
Chao Zhang

Superhydrophobic surface is a promising technology, but the effect of superhydrophobic surface on flow noise is still unclear. Therefore, we used alternating free-slip and no-slip boundary conditions to study the flow noise of superhydrophobic channel flows with streamwise strips. The numerical calculations of the flow and the sound field have been carried out by the methods of large eddy simulation (LES) and Lighthill analogy, respectively. Under a constant pressure gradient (CPG) condition, the average Reynolds number and the friction Reynolds number are approximately set to 4200 and 180, respectively. The influence on noise of different gas fractions (GF) and strip number in a spanwise period on channel flow have been studied. Our results show that the superhydrophobic surface has noise reduction effect in some cases. Under CPG conditions, the increase in GF increases the bulk velocity and weakens the noise reduction effect. Otherwise, the increase in strip number enhances the lateral energy exchange of the superhydrophobic surface, and results in more transverse vortices and attenuates the noise reduction effect. In our results, the best noise reduction effect is obtained as 10.7 dB under the scenario of the strip number is 4 and GF is 0.5. The best drag reduction effect is 32%, and the result is obtained under the scenario of GF is 0.8 and strip number is 1. In summary, the choice of GF and the number of strips is comprehensively considered to guarantee the performance of drag reduction and noise reduction in this work.


1996 ◽  
Vol 36 (18) ◽  
pp. 2352-2365 ◽  
Author(s):  
H. R. Azimi ◽  
R. A. Pearson ◽  
R. W. Hertzberg

2011 ◽  
Author(s):  
Pål Løvhaugen ◽  
Balpreet S. Ahluwalia ◽  
Olav G. Hellesø

2021 ◽  
Author(s):  
Jitong Liu ◽  
Wanjun Li ◽  
Haiqiu Zhou ◽  
Yixin Gu ◽  
Fuhua Jiang ◽  
...  

Abstract The reservoir underneath the salt bed usually has high formation pressure and large production rate. However, downhole complexities such as wellbore shrinkage, stuck pipe, casing deformation and brine crystallization prone to occur in the drilling and completion of the salt bed. The drilling safety is affected and may lead to the failure of drilling to the target reservoir. The drilling fluid density is the key factor to maintain the salt bed’s wellbore stability. The in-situ stress of the composite salt bed (gypsum-salt -gypsum-salt-gypsum) is usually uneven distributed. Creep deformation and wellbore shrinkage affect each other within layers. The wellbore stability is difficult to maintain. Limited theorical reference existed for drilling fluid density selection to mitigate the borehole shrinkage in the composite gypsum-salt layers. This paper established a composite gypsum-salt model based on the rock mechanism and experiments, and a safe-drilling density selection layout is formed to solve the borehole shrinkage problem. This study provides fundamental basis for drilling fluid density selection for gypsum-salt layers. The experiment results show that, with the same drilling fluid density, the borehole shrinkage rate of the minimum horizontal in-situ stress azimuth is higher than that of the maximum horizontal in-situ stress azimuth. However, the borehole shrinkage rate of the gypsum layer is higher than salt layer. The hydration expansion of the gypsum is the dominant reason for the shrinkage of the composite salt-gypsum layer. In order to mitigate the borehole diameter reduction, the drilling fluid density is determined that can lower the creep rate less than 0.001, as a result, the borehole shrinkage of salt-gypsum layer is slowed. At the same time, it is necessary to improve the salinity, filter loss and plugging ability of the drilling fluid to inhibit the creep of the soft shale formation. The research results provide technical support for the safe drilling of composite salt-gypsum layers. This achievement has been applied to 135 wells in the Amu Darya, which completely solved the of wellbore shrinkage problem caused by salt rock creep. Complexities such as stuck string and well abandonment due to high-pressure brine crystallization are eliminated. The drilling cycle is shortened by 21% and the drilling costs is reduced by 15%.


Sign in / Sign up

Export Citation Format

Share Document