A Comparison of Time Domain Methods for Asymmetric Roll Predictions

Author(s):  
Robert Seah ◽  
Fabien Bigot ◽  
Nathan Tom ◽  
Dominique Roddier

Unlike ocean going vessels, FPSOs often have appendages, such as bilge keels or riser porches, at or below the waterline in an asymmetric configuration. In addition, the riser and mooring systems impose asymmetric loads on the hull. As a result, the expected roll motion response to a wave environment is asymmetric and traditional methodologies cannot be used to predict it. Morison drag elements can be incorporated to represent the asymmetric condition and are easily implemented in time domain simulations. The limitation to this engineering approach is that the drag coefficient can only be calibrated to produce accurate motions or accurate appendage loads but not both. In this paper we compare the response using two time domain approaches, the first being adapted from a commercial marine dynamics analysis tool [9] and the other being a specialized hydrodynamics motion prediction tool [4]. Here, the commercial tool utilizes constant coefficient drag elements in conjunction with traditional linear equivalent roll damping to model the effect of unequal port and starboard bilge keels as is typical when a riser balcony are present. In contrast, the newly developed hydrodynamic model relies solely on a Keulegan-Carpenter (KC) number dependent drag relation to represent the asymmetric drag contributions. The different calibration procedures will be discussed and a comparison for a design environmental condition between the two methodologies will be presented.

2014 ◽  
Vol 488-489 ◽  
pp. 881-885
Author(s):  
He Cheng Gao ◽  
Zhuang Lin ◽  
Dong Mei Yang ◽  
Ping Li ◽  
Zhi Qun Guo

It is of great significance and value to predict the roll of two ships, especially when one is replenishing for the other or in some other conditions. Autoregressive time series analysis method (AR) with Recursive least squares (RLS) theory is the mainstream currently and the effectiveness for the prediction of the motion attitudes have been fully validated. However, there are some differences between the prediction for the motion of two vessels and for that of one. The hydrodynamic interactions between two ships should be taken into consideration and be reflected in the application of the method. In order to solve this issue, this work firstly proposed a double ships autoregressive (DAR) method, which can determine the orders and the parameters of model in real-time with consideration of the interference between two ships and the DAR method was applied to forecast the roll motion between two ships. The simulative results of DAR method show the validity and veracity compared to real value and the advancement compared to the autoregressive (AR) method for single ship motion prediction.


2010 ◽  
Vol 24 (22) ◽  
pp. 4325-4331
Author(s):  
XING-YUAN WANG ◽  
JUN-MEI SONG

This paper studies the hyperchaotic Rössler system and the state observation problem of such a system being investigated. Based on the time-domain approach, a simple observer for the hyperchaotic Rössler system is proposed to guarantee the global exponential stability of the resulting error system. The scheme is easy to implement and different from the other observer design that it does not need to transmit all signals of the dynamical system. It is proved theoretically, and numerical simulations show the effectiveness of the scheme finally.


Author(s):  
W. J. Chen

Abstract Concise equations for rotor dynamics analysis are presented. Two coordinate ordering methods are introduced in the element equations of motion. One is in the real domain and the other is in the complex domain. The two proposed ordering algorithms lead to more compact element matrices. A station numbering technique is also proposed for the system equations during the assembly process. This numbering technique can minimize the matrix bandwidth, the memory storage and can increase the computational efficiency.


PLoS ONE ◽  
2018 ◽  
Vol 13 (10) ◽  
pp. e0206476 ◽  
Author(s):  
Binglei Guan ◽  
Wei Yang ◽  
Zhibin Wang ◽  
Yinggan Tang

2008 ◽  
Vol 2008 ◽  
pp. 1-4 ◽  
Author(s):  
Shuhong Li ◽  
Lifang Shi ◽  
Xiaochun Dong ◽  
Chunlei Du ◽  
Yudong Zhang

A convenient lithographic technique is proposed in this paper, which can be used to produce subdiffraction-limit arrays of nanopatterns over large areas (about several square centimeters). An array of polystyrene spheres (PS) is arranged on the surface of a layer of silver which has a thickness of about tens of nanometers. With the normal illumination light of wavelength 365 nm perpendicular to the substrate, PS can generate an array of optical patterns with high intensity at their contact points with silver. By designing the silver slab, the evanescent waves that carry subwavelength information about the optical patterns are substantially enhanced, while propagating components are restrained. In the photoresist which is on the other side of silver, the optical intensity is redistributed and subdiffraction-limit patterns are obtained after exposure and development. Simulation by finite-difference time-domain (FDTD) and experiments were carried out to verify the technique. The results show that by using PS with diameter of 600 nm, nanopatterns with dimension of less than 80 nm can be obtained.


Author(s):  
Yoshiyuki Inoue ◽  
Md. Kamruzzaman

The LNG-FPSO concept is receiving much attention in recent years, due to its active usage to exploit oil and gas resources. The FPSO offloads LNG to an LNG carrier that is located close to the FPSO, and during this transfer process two large vessels are in close proximity to each other for daylong periods of time. Due to the presence of neighboring vessel, the motion response of both the vessels will be affected significantly. Hydrodynamic interactions related to wave effects may result in unfavorable responses or the risk of collisions in a multi-body floating system. Not only the motion behavior but also the second order drift forces are influenced by the neighboring structures due to interactions of the waves among the structures. A study is made on the time domain analysis to assess the behavior and the operational capability of the FPSO system moored in the sea having an LNG carrier alongside under environmental conditions such as waves, wind and currents. This paper presents an analysis tool to predict the dynamic motion response and non-linear connecting and mooring forces on a parallel-connected LNG-FPSO system due to non-linear exciting forces of wave, wind and current. Simulation for the mooring performance is also investigated. The three-dimensional source-sink technique has been applied to obtain the radiation forces and the transfer function of wave exciting forces on floating multi-bodies. The hydrodynamic interaction effect between the FPSO and the LNG carrier is included to calculate the hydrodynamic forces. For the simulation of a random sea and also for the generation of time depended wind velocity, a fully probabilistic simulation technique has been applied. Wind and current loads are estimated according to OCIMF. The effects of variations in wave, wind and current loads and direction on the slowly varying oscillations of the LNG and FPSO are also investigated in this paper. Finally, some conclusions are drawn based on the numerical results obtained from the present time domain simulations.


2014 ◽  
Vol 28 (07) ◽  
pp. 1450016
Author(s):  
YE LIU ◽  
LIN LUO ◽  
CHUN JIANG

We propose a structure of 2D photonic crystal waveguide composed of hexagonal lattices of air holes in high index materials. Frozen mode regime can be observed within the photonic band gap. Light incident into the waveguide is coupled into two modes. One mode has enhanced amplitude and the other one has slow group velocity. Finite-different time-domain (FDTD) simulation is used to demonstrate the propagation of the slow mode.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Bing Li ◽  
Jing-song Hong

Two novel dual band-notched ultra-wideband (UWB) printed monopole antennas with simple structure and small size are presented. The size of both antennas is25×25×0.8 mm3. The bandwidth of one of the proposed antenna can be from 2.7 GHz to 36.8 GHz, except the bandwidth of 3.2–3.9 GHz for WiMAX applications and 5.14–5.94 GHz for WLAN applications. The bandwidth of the other is ranging for 2.7 to 41.1 GHz, except the bandwidth of 3.2–3.9 GHz for WiMAX applications and 4.8–5.9 GHz for WLAN applications. Bandwidths of the antennas are about 512% and 455% wider than those of conventional band-notched UWB antennas, respectively. In addition, the time-domain characteristics of the two antennas are investigated to show the difference between both antennas.


2021 ◽  
Author(s):  
Min Zhang ◽  
Junrong Wang ◽  
Junfeng Du ◽  
Nuno Miguel Magalhaes Duque Da Fonseca ◽  
Galin Tahchiev ◽  
...  

1973 ◽  
Vol 13 (01) ◽  
pp. 48-56
Author(s):  
Emilio C. Garcia

Abstract The performance of offshore work from floating platforms dictates the desirability of "Minimum platforms dictates the desirability of "Minimum motions". One of the most troublesome motions, especially in the case of ship-shape or barge-shape platforms, is the roll motion because of the large platforms, is the roll motion because of the large amplitude and relatively large acceleration forces that could arise from such motion. Different devices have been employed to minimize The roll motion of ships bilge keels, gyroscopic stabilizers, solid moss transfer, stabilizing fins, U-tanks, flume tanks, active ballast transfer tanks, etc. The systems utilizing fins are effective only when the ship is under way and are not suitable for zero-speed offshore operations. The barge keels are generally very effective in damping the roll motions, and they prevent the angle of roll from becoming too large, but their reduction of the roll is limited to angles that are too great for the satisfactory performance of offshore operations, i.e., oil drilling. performance of offshore operations, i.e., oil drilling. The gyroscopic stabilizers generally are not used because of their high cost and complexity. The U-tanks, flume tanks, and active stabilizing tanks work by transferring ballast horizontally and by creating a stabilizing moment out of phase with the exciting force. This paper details use of the detuning tank. This system is different from others in the sense that it does not try to compensate the action of the forces imparted by the sea to the floating body with properly phased compensating forces, but tries to properly phased compensating forces, but tries to prevent the sea from imparting the forces to the prevent the sea from imparting the forces to the body. The effectiveness of the detuning tanks bas been experimentally verified in model basin motion tests and studies. Introduction Safety at sea is the first consideration of marine designers. Ships of conventional form or floating platforms for offshore operations must, under all platforms for offshore operations must, under all expected circumstances, float and be stable-hence, the application of suitable criteria for stability is one of the cornerstones of naval architectural design. The ability to maintain stability under design weather conditions, even after sustaining a certain amount of damage, has dictated maximum allowable heights of the center of gravity (KG) or minimum metacentric heights (GM). This limitation is certainly necessary in order to meet the demands of safety, but it is necessary only during certain extreme weather conditions or after flooding caused by damage. But this occurs, if it ever does, only during a very small percentage of the life of the ship, and to be prepared for this eventuality we may be forced to select some "safe parameter", like minimum GM, that may affect the parameter", like minimum GM, that may affect the motion performance of the ship during the major part of her useful working life. part of her useful working life. The motion performance may be of certain importance for ships engaged in ocean trade from the standpoint of crew comfort and the ability to maintain sea speed both of which have a certain economic value. But ships and platforms that are engaged An offshore work are more vitally affected by the motion performance, and their very effectiveness as offshore tools depends on how many days of the year they can perform their functions and the weather conditions that would force operations to be suspended. Roll motions have been one of the reasons for discontinuing offshore operations for ship-shape and barge-shape platforms not only because the amplitude of the motions but because of the high acceleration forces in the work area that can be originated by relative small amplitudes at short motion periods. The inclination due to wave action appears to be composed of two periodic functions, the period of one being the wave period T and the other period of one being the wave period T and the other the natural rolling period of the ship T . Rolling in still water is a free oscillation and the ship will roll in its own natural period. Among waves, the impulses producing the roll are periodic and tend to set up a forced oscillation of the ship in the period of the wave. If waves of constant period act for a sufficient time upon the ship, it will roll in the period of the waves, but if the period of the waves period of the waves, but if the period of the waves is not constant, the ship roll will not follow exactly that of the waves because of the tendency of the ship to revert to roll in its own natural period. SPEJ P. 48


Sign in / Sign up

Export Citation Format

Share Document