Simplified Model for the Weight Estimation of Floating Offshore Plant Using the Statistical Method

Author(s):  
Myung-Il Roh ◽  
Seong-Ho Seo ◽  
Hyun-Kyoung Shin ◽  
Nam-Kug Ku ◽  
Sol Ha ◽  
...  

The weight information of a floating offshore plant, such as an FPSO, is one of the important data to estimate the amount of production material and to determine the production method for its construction. In addition, the weight information is a key factor which affects in the building cost and production period of the offshore plant. Although the importance of the weight has long been recognized, the weight has been roughly estimated by using the existing design and production data, and designer’s experience. To improve this task, a simplified model for the weight estimation of the offshore plant using the statistical method was developed in this study. To do this, various past records to estimate the weight of the offshore plant were collected through the literature survey, and then the correlation analysis and the multiple regression analysis were performed to develop the simplified model for the weight estimation. Finally, to evaluate the applicability of the developed model, it was applied to some examples of the weight estimation of topsides of the offshore plant. The results showed that the developed model can be applied the weight estimation process of the offshore plant at the early design stage.

2021 ◽  
Vol 11 (1) ◽  
pp. 28-33
Author(s):  
O. Kurasova ◽  
◽  
V. Marcinkevičius ◽  
V. Medvedev ◽  
B. Mikulskienė

Accurate cost estimation at the early stage of a construction project is a key factor in the success of most projects. Many difficulties arise when estimating the cost during the early design stage in customized furniture manufacturing. It is important to estimate the product cost in the earlier manufacturing phase. The cost estimation is related to the prediction of the cost, which commonly includes calculation of the materials, labor, sales, overhead, and other costs. Historical data of the previously manufactured products can be used in the cost estimation process of the new products. In this paper, we propose an early cost estimation approach, which is based on machine learning techniques. The experimental investigation based on the real customized furniture manufacturing data is performed, results are presented, and insights are given.


2006 ◽  
Vol 113 ◽  
pp. 91-96 ◽  
Author(s):  
Priit Leomar ◽  
Mart Tamre ◽  
Tõnis Riibe ◽  
Tõnu Vaher ◽  
Toomas Haggi

Eli Ltd. and Tallinn University of Technology (TUT) Department of Mechatronics are currently performing studies in order to develop a mini-class universal purpose unmanned aircraft [1,2]. The paper focuses on strength calculations and weight vs. strength optimization of the fuselage of this developed UAV system. To develop a strong but lightweight UAV fuselage, advanced computer modeling and finite element structure analysis are used as virtual prototyping tools for the optimization of the fuselage at early design stage and through the production period to improve the design [3]. Design optimization is applied to minimize the maximum stresses within the fuselage, subject to strain constraint in conjunction with both geometry and choice of appropriate fibre orientations and stacking sequence as design variables and also material parameters. The fuselage for the UAV plane was designed and manufactured using E-Glass/Epoxy and High modulus (HM) carbon/Epoxy composites. In this paper ANSYS software has been successfully applied to minimize the weight of the fuselage and increase the UAV fuselage strength. The results show how the fuselage design could be improved with the help of finite element method analysis and provide guidelines for the structure and material design for the composite based UAV SWAN fuselage.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Qingbo Yan

In recent years, video production has become one of the key challenges for researchers in the area. In the face of the poor video effects of earlier video production methods and approaches, this study has considered the MOOC-based microclass combined with the MOOC video production method for improving the video production effect. According to the idea of MOOC, based on the early design stage and shooting preparation stage of video development, the video development team prepares the text, manuscript, and course type according to the initial design stage of video development and formulates the recording process. In the video recording stage, all activities of classroom teaching are recorded through the multislot mode for enhancing the sense of scene of the video picture. In the later stage of video production, video editing and feature processing are implemented by means of film and television to improve the effect of video production. The video production method based on the Hidden Markov model is used to ensure the continuity of front and back shots and complete online open video production and release to the cloud. The experimental results of the study show that the application effect of this method is effective, and the average satisfaction is as high and measured as 91.36%.


Author(s):  
Sri Handayani Sianipar ◽  
Fince Tinus Waruwu ◽  
Lince Tomoria Sianturi

Ulos batak toba is one of indonesia traditional fabric, precisely the traditional cloth of the batak toba. From time to time the ulos fabric was growing in terms of  type and motif. One of the companies that produces ulos batak is cv. Ala dos roha. The authors conducted this study aimed at predicting the amount of production of ulos batak to produced later. The author uses the previous request, inventory and production data using fuzzy logic tsukamoto. The final result of the calculation with this method will be more effective and efficient so as to speed up the decision making time to predict the amount of production to be produced next.Keywords: prediction, amount of  production, method of tsukamoto


2021 ◽  
Vol 1 ◽  
pp. 3229-3238
Author(s):  
Torben Beernaert ◽  
Pascal Etman ◽  
Maarten De Bock ◽  
Ivo Classen ◽  
Marco De Baar

AbstractThe design of ITER, a large-scale nuclear fusion reactor, is intertwined with profound research and development efforts. Tough problems call for novel solutions, but the low maturity of those solutions can lead to unexpected problems. If designers keep solving such emergent problems in iterative design cycles, the complexity of the resulting design is bound to increase. Instead, we want to show designers the sources of emergent design problems, so they may be dealt with more effectively. We propose to model the interplay between multiple problems and solutions in a problem network. Each problem and solution is then connected to a dynamically changing engineering model, a graph of physical components. By analysing the problem network and the engineering model, we can (1) derive which problem has emerged from which solution and (2) compute the contribution of each design effort to the complexity of the evolving engineering model. The method is demonstrated for a sequence of problems and solutions that characterized the early design stage of an optical subsystem of ITER.


Healthcare ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 888
Author(s):  
Leopoldo Sdino ◽  
Andrea Brambilla ◽  
Marta Dell’Ovo ◽  
Benedetta Sdino ◽  
Stefano Capolongo

The need for 24/7 operation, and the increasing requests of high-quality healthcare services contribute to framing healthcare facilities as a complex topic, also due to the changing and challenging environment and huge impact on the community. Due to its complexity, it is difficult to properly estimate the construction cost in a preliminary phase where easy-to-use parameters are often necessary. Therefore, this paper aims to provide an overview of the issue with reference to the Italian context and proposes an estimation framework for analyzing hospital facilities’ construction cost. First, contributions from literature reviews and 14 case studies were analyzed to identify specific cost components. Then, a questionnaire was administered to construction companies and experts in the field to obtain data coming from practical and real cases. The results obtained from all of the contributions are an overview of the construction cost components. Starting from the data collected and analyzed, a preliminary estimation tool is proposed to identify the minimum and maximum variation in the cost when programming the construction of a hospital, starting from the feasibility phase or the early design stage. The framework involves different factors, such as the number of beds, complexity, typology, localization, technology degree and the type of maintenance and management techniques. This study explores the several elements that compose the cost of a hospital facility and highlights future developments including maintenance and management costs during hospital facilities’ lifecycle.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3552
Author(s):  
Abhishek Das ◽  
Richard Beaumont ◽  
Iain Masters ◽  
Paul Haney

Laser micro-welding is increasingly being used to produce electrically conductive joints within a battery module of an automotive battery pack. To understand the joint strength of these laser welds at an early design stage, micro-joints are required to be modelled. Additionally, structural modelling of the battery module along with the electrical interconnects is important for understanding the crash safety of electric vehicles. Fusion zone based micro-modelling of laser welding is not a suitable approach for structural modelling due to the computational inefficiency and the difficulty of integrating with the module model. Instead, a macro-model which computationally efficient and easy to integrate with the structural model can be useful to replicate the behaviour of the laser weld. A macro-modelling approach was adopted in this paper to model the mechanical behaviour of laser micro-weld. The simulations were based on 5 mm diameter circular laser weld and developed from the experimental data for both the lap shear and T-peel tests. This modelling approach was extended to obtain the joint strengths for 3 mm diameter circular seams, 5 mm and 10 mm linear seams. The predicted load–displacement curves showed a close agreement with the test data.


2012 ◽  
Vol 236-237 ◽  
pp. 344-349
Author(s):  
Xiao Feng Yin ◽  
Jing Xing Tan ◽  
Xiu Ting Wu ◽  
Zhi Jun Gong

To improve the timing related performance of the embedded software of automotive control system, a performance modeling language has been developed based on UML (Unified Modeling Language) using meta-modeling technique. The proposed language consists of three kinds of meta-models used to define the high-level modeling paradigms for software structure, target platform and runtime system respectively. The modeling environment configured by the proposed language and software modules of functional model importation, components allocation, task forming and timing analysis can reuse the existing functional models, add timing requirement as well as resource constraints, and fulfill formal timing analysis at an early design stage. As results, the reliability of the automotive embedded control software can be improved and the development cycle and cost can also be reduced.


Sign in / Sign up

Export Citation Format

Share Document